dy by dx of y=log √1-cosx by 1+cosx
kvnmurty:
pls rate the answer high
Answers
Answered by
115
y = log [ (√1- cos x) / (√1- +cos x) ]
1 - cos x = 2 sin² x/2 1+ cos x = 2 cos² x/2
y = log sin x/2 / cos x/2 ) = log tan (x/2)
dy/dx = 1 / (tan x/2 ) * sec² x/2 * 1/2
= 1 / [ 2 sin x/2 cos x/2 ] = 1/sinx = cosec x
1 - cos x = 2 sin² x/2 1+ cos x = 2 cos² x/2
y = log sin x/2 / cos x/2 ) = log tan (x/2)
dy/dx = 1 / (tan x/2 ) * sec² x/2 * 1/2
= 1 / [ 2 sin x/2 cos x/2 ] = 1/sinx = cosec x
Answered by
89
y = log ( √1-cosx / √1+cosx )
y = log [ √1-(1-2sin²x/2) / √1+(2cos²x/2-1) ]
y = log [ √sin²x/2 / √cos²x/2 ]
y = log [√tan²x/2 ]
y = log [ tanx/2 ]
dy/dx = 1/ tanx/2 × sec²x/2.1/2
on simplification u will get
dy/dx = 1 / 2. sinx/2.cosx/2
dy/dx = 1/sinx
dy/dx = cosecx
y = log [ √1-(1-2sin²x/2) / √1+(2cos²x/2-1) ]
y = log [ √sin²x/2 / √cos²x/2 ]
y = log [√tan²x/2 ]
y = log [ tanx/2 ]
dy/dx = 1/ tanx/2 × sec²x/2.1/2
on simplification u will get
dy/dx = 1 / 2. sinx/2.cosx/2
dy/dx = 1/sinx
dy/dx = cosecx
Similar questions