dy/dx = -/1_y^2/1-x^2 solve differential equation
Attachments:
Answers
Answered by
0
Answer:
y √(1 - x² ) - x √( 1 - y² ) = k
Step-by-step explanation:
Given--->
dy / dx = √{ (1 - y² ) / ( 1 - x² ) }
Solution---> ATQ,
dy / dx = √(1 - y²) / √(1 - x²)
We solve this differential equation by the method of seperation of variables, in this method we collect terms containing x only in one side and that of y in other side and then integrate the whole equation.
=> dy / √1 - y² = dx / √1 - x²
Now , integrating both sides , we get,
=> ∫ dy / √(1 - y² ) = ∫ dx / √(1 - x² ) + C
We have a formula ,
∫ dp / √(1 - p² ) = Sin⁻¹ p + C , applying it here , we get,
=> Sin⁻¹ y = Sin⁻¹ x + Sin⁻¹ k
=> Sin⁻¹ y - Sin⁻¹ x = Sin⁻¹ k
=> Sin⁻¹ { y √(1 - x² ) - x √(1 - x² ) } = Sin⁻¹ k
=> y √(1 - x² ) - x √(1 - x² ) = k
Similar questions