Math, asked by shailybisht9, 1 year ago

dy/dx + 2xy =x^3 solve the differential equation

Answers

Answered by MarkAsBrainliest
46

Answer :

Given differential equation is

 \frac{dy}{dx} + 2xy = {x}^{3} ...(i)

Then, Integrating Factor

= e^{\int 2x dx}

= e^{x^{2}}

Now, multiplying (i) by I.F., we get

 \frac{d}{dx} (y {e}^{ {x}^{2} } ) = {x}^{3} {e}^{ {x}^{2} }

Taking integration, we get

y {e}^{{x}^{2}} = \int {x}^{3} {e}^{ {x}^{2} } dx ...(ii)

Let, x^{2} = z

\implies 2x dx = dz

Thus,

\int {x}^{3} {e}^{ {x}^{2} }dx

= \frac{1}{2} \int {x}^{2} {e}^{x^{2}} (2xdx)

= \frac{1}{2} \int z e^{z} dz

 = \frac{1}{2} z \int {e}^{z} dz - \frac{1}{2} \int ( \frac{d}{dz} (z) \times \int {e}^{z} dz)dz \\ \\ = \frac{1}{2} z {e}^{z} - \frac{1}{2} \int {e}^{z} dz + c

where c is integral constant

 = \frac{1}{2} z {e}^{z} - \frac{1}{2} {e}^{z} + c \\ \\ = \frac{1}{2} {e}^{z} (z - 1) + c \\ \\ = \frac{1}{2} {e}^{ {x}^{2} } ( {x}^{2} - 1) + c

From (ii), we get

y {e}^{ {x}^{2} } = \frac{1}{2} {e}^{ {x}^{2} } ( {x}^{2} - 1) + c \\ \\ \implies y = \frac{1}{2} ( {x}^{2} - 1) + c \: {e}^{ - {x}^{2} }

which is the required solution

#MarkAsBrainliest


PratikRatna: magnificent explanation
Similar questions