Math, asked by brockmurugan, 8 months ago

dy/dx-2y=3ex then find y"​

Answers

Answered by BrainlyPopularman
8

GIVEN :

 \implies \bf \dfrac{dy}{dx}  - 2y = 3 {e}^{x}

TO FIND :

▪︎ Value of 'y' = ?

SOLUTION :

 \implies \bf \dfrac{dy}{dx}  - 2y = 3 {e}^{x}

• This differential equation is in the form of –

 \implies \bf \dfrac{dy}{dx} + Py = Q

• Now compare –

 \:\:  \longrightarrow \:\:  \bf P= - 2

 \:  \:  \longrightarrow \:  \:  \bf Q= 3 {e}^{x}

▪︎ Let's calculate I.F. for linear differential equation –

 \implies \bf I.F.  =  {e}^{ \int p.dx}

 \implies \bf I.F.  =  {e}^{ \int -2.dx}

 \implies \large{ \boxed { \bf I.F.  =  {e}^{-2x}}}

☯️ SOLUTION for Liner Differential :–

 \implies \large{ \boxed{ \bf y(I.F.)  =  \int(Q)(I.F.).dx + c}}

• Put the values –

 \implies  \bf y( {e}^{-2x})  =   \int(3 {e}^{x})( {e}^{ - 2x} ).dx + c

 \implies  \bf y( {e}^{-2x})  =   \int(3 {e}^{x - 2x}).dx + c

 \implies  \bf y( {e}^{-2x})  = 3  \int {e}^{-x}.dx + c

 \implies  \bf y( {e}^{-2x})  = -3 {e}^{-x}+ c

 \implies  \bf y  = -3{e}^{-x}. {e}^{2x} + c. {e}^{2x}

 \implies \large { \boxed{ \bf y  =-3 {e}^{x}+ c. {e}^{2x}}}

Similar questions