Math, asked by cafrinaaa4900, 20 days ago

dy/dx=(3x+2y+4)^2
equation redusebial to veriabal separation eqn

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm \: \dfrac{dy}{dx} =  {(3x + 2y + 4)}^{2}   \\

To solve this differential equation, we use method of substitution.

So substitute,

\rm \: 3x + 2y + 4 = z \\

On differentiating both sides w. r. t. x, we get

\rm \: 3 + 2\dfrac{dy}{dx} = \dfrac{dz}{dx} \\

\rm \: 2\dfrac{dy}{dx} = \dfrac{dz}{dx}  - 3\\

\rm \: \dfrac{dy}{dx} = \dfrac{1}{2}\bigg( \dfrac{dz}{dx}  - 3\bigg)\\

So, on substituting the values in given differential equation, we get

\rm \:  \dfrac{1}{2}\bigg( \dfrac{dz}{dx}  - 3\bigg) =  {z}^{2} \\

\rm \:   \dfrac{dz}{dx}  - 3 =  2{z}^{2} \\

\rm \:   \dfrac{dz}{dx} =  2{z}^{2} + 3 \\

On separating the variables, we get

\rm \:   \dfrac{dz}{ {2z}^{2} + 3} =  dx \\

On integrating both sides, we get

\rm \:\displaystyle\int\rm  \dfrac{dz}{ {2z}^{2} + 3} =  \displaystyle\int\rm dx \\

\rm \: \dfrac{1}{2} \displaystyle\int\rm \dfrac{dz}{ {z}^{2} +  \dfrac{3}{2} } =  \displaystyle\int\rm dx \\

\rm \: \dfrac{1}{2} \displaystyle\int\rm \dfrac{dz}{ {z}^{2} +   {\bigg[\dfrac{ \sqrt{3} }{ \sqrt{2} } \bigg]}^{2}  } =  x + c \\

We know,

\boxed{\rm{  \:\displaystyle\int\rm  \frac{dx}{ {x}^{2}  +  {a}^{2} } \:  =  \:  \frac{1}{a} {tan}^{ - 1} \frac{x}{a} + c \:  \: }} \\

So, using this result, we get

\rm \: \dfrac{1}{2} \times \dfrac{1}{\dfrac{ \sqrt{3} }{ \sqrt{2} } } {tan}^{ - 1} \dfrac{ \sqrt{2}z}{ \sqrt{3} } = x + c \\

\rm \: \dfrac{1}{ \sqrt{6} } {tan}^{ - 1} \dfrac{ \sqrt{2} \: z}{ \sqrt{3} } = x + c \\

\rm \: \dfrac{1}{ \sqrt{6} } {tan}^{ - 1} \dfrac{ \sqrt{2} \: (3x + 2y + 4)}{ \sqrt{3} } = x + c \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions