Math, asked by donlogesh9, 7 months ago

Dy/DX= ay- x^2/y^2- ac, find d^2y/dx^2

Answers

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \bigstar \huge  \underline { \boxed{  \sf{ \color{green} a\color{pink}n \color{red} s \color{lime} w \color{orange} e \color{cyan}r  \color{red}\heartsuit}}}

\implies\displaystyle\bf{\dfrac{Dy}{Dx}=\dfrac{ay-x^2}{y^2-ac}}

\red\bigstar\underline{\bf{ Double \: Differentiating \: the \: following \: Equation}}

By using Quotient Rule :

 \:  \:  \\ \large\implies \displaystyle \bf{ \frac{ {d}^{2} y}{ {dx}^{2} }  =  \frac{ {y}^{2} - ac \frac{dy}{dx}(ay -  {x}^{2}   ) -  \frac{dy}{dx} ( {y}^{2}  - ac) \times ay -  {x}^{2}  }{ {( {y}^{2} - ac }^{2}) } }

 \:  \\  \implies \bf{ \frac{ {d}^{2}y }{ {dx}^{2} }  =  \frac{ {y}^{2} - ac(a \frac{dy}{dx}   - 2x - (2y - 0)  \times ay -  {x}^{2}  }{ {( {y}^{2} - ac })^{2} } }

 \:   \\ \implies \displaystyle \bf{ \frac{ {d}^{2} y}{ {dx}^{2} }  =  \frac{ {y}^{2}(a - 2x) - ac(a - 2x) - 2y(ay -  {x}^{2}  )}{ {( {y}^{2}  - ac})^{2} } }

 \:  \\  \implies \displaystyle \bf{ \frac{ {d}^{2}y }{  {dx}^{2} }  =  \frac{ {y}^{2}a - 2x {y}^{2}  -  {a}^{2}c  + 2xac  - 2a {y}^{2} + 2y {x}^{2}  }{ ({ {y}^{2}  - ac})^{2} } }

 \:  \\   \implies \bf{ \frac{ {d}^{2} y}{ {dx}^{2} }  =  \frac{  -  {y}^{2}a - 2x {y}^{2} -  {a}^{2}c   + 2xac  + 2yx }{ {( {y}^{2} - ac })^{2} } }

Similar questions