Math, asked by harikatangudu7, 8 months ago

dy/dx=cos(x+y)+sin(x+y)​

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\blue{\sf{\dfrac{dy}{dx}=cos(x+y)+sin(x+y)}}

To solve this, first

\green{\tt{Put\,\,\,x+y=v}}

Now, differentiate both sides w.r.t x

\green{\tt{\mapsto\,1+\dfrac{dy}{dx}=\dfrac{dv}{dx}}}

\green{\tt{\mapsto\,\dfrac{dy}{dx}=\dfrac{dv}{dx}-1}}

Substitute these into our original equation,

\sf{\dfrac{dv}{dx}-1=cos(v)+sin(v)}

\sf{\implies\,\dfrac{dv}{dx}=cos(v)+sin(v)+1}

\sf{\implies\,\dfrac{dv}{cos(v)+sin(v)+1}=dx}

Integrating both sides,

\displaystyle\sf{\implies\,\int\dfrac{dv}{cos(v)+sin(v)+1}=\int\,dx}

We know,

\boxed{\bullet\,\,\,\,\purple{\bf{sin(\theta)=\dfrac{2\,\,tan\left(\dfrac{\theta}{2}\right)}{1+tan^2\left(\dfrac{\theta}{2}\right)}\,\,\,\,\,\&\,\,\,\,\,cos(\theta)=\dfrac{1-tan^2\left(\dfrac{\theta}{2}\right)}{1+tan^2\left(\dfrac{\theta}{2}\right)}}}}

So,

\displaystyle\sf{\implies\,\int\dfrac{dv}{\dfrac{1-tan^2\left(\dfrac{v}{2}\right)}{1+tan^2\left(\dfrac{v}{2}\right)}+\dfrac{2\,\,tan\left(\dfrac{v}{2}\right)}{1+tan^2\left(\dfrac{v}{2}\right)}+1}=\int\,dx}

\displaystyle\sf{\implies\,\int\dfrac{dv}{\dfrac{1-tan^2\left(\dfrac{v}{2}\right)+2\,\,tan\left(\dfrac{v}{2}\right)+1+tan^2\left(\dfrac{v}{2}\right)}{1+tan^2\left(\dfrac{v}{2}\right)}}=\int\,dx}

\displaystyle\sf{\implies\,\int\dfrac{1+tan^2\left(\dfrac{v}{2}\right)}{1-tan^2\left(\dfrac{v}{2}\right)+2\,\,tan\left(\dfrac{v}{2}\right)+1+tan^2\left(\dfrac{v}{2}\right)}\,dv=\int\,dx}

\displaystyle\sf{\implies\,\int\dfrac{sec^2\left(\dfrac{v}{2}\right)}{1+2\,\,tan\left(\dfrac{v}{2}\right)+1}\,dv=\int\,dx}

\displaystyle\sf{\implies\,\int\dfrac{sec^2\left(\dfrac{v}{2}\right)}{2+2\,\,tan\left(\dfrac{v}{2}\right)}\,dv=\int\,dx}

\displaystyle\sf{\implies\,\int\dfrac{sec^2\left(\dfrac{v}{2}\right)}{2\left\{1+tan\left(\dfrac{v}{2}\right)\right\}}\,dv=\int\,dx}

\displaystyle\sf{\implies\,\int\dfrac{\dfrac{1}{2}\cdot sec^2\left(\dfrac{v}{2}\right)}{1+tan\left(\dfrac{v}{2}\right)}\,dv=\int\,dx}

In the integral in LHS,

\green{\tt{Put\,\,\,1+tan\left(\dfrac{v}{2}\right)=u}}

\green{\tt{\mapsto\,\dfrac{1}{2}\cdot sec^2\left(\dfrac{v}{2}\right)\,dv=du}}

So,

\displaystyle\sf{\implies\,\int\dfrac{du}{u}=\int\,dx}

\displaystyle\sf{\implies\,\ln|u|=x+c}

Substitute the value of u,

\displaystyle\sf{\implies\,\ln\left|1+tan\left(\dfrac{v}{2}\right)\right|=x+c}

Substitute the value of v,

\displaystyle\sf{\implies\,\ln\left|1+tan\left(\dfrac{x+y}{2}\right)\right|=x+c}

Similar questions