Math, asked by umairkhattak223, 3 months ago

dy/dx=e^3x + 2y
plz help me to solve this​

Answers

Answered by yashu200005
0

Answer:

which formula we should use bro tell me fast

Answered by mathdude500
4

Working Note :-

Linear Differential equation of the form,

\rm :\longmapsto\:\dfrac{dy}{dx}  + py = q \: where \: p \: and \: q \:  \in \: f(x)

We have to first find the Integrating Factor, I.F.,

\rm :\longmapsto\:I.F. =  {e}^{  \: \int \: pdx}

Then, solution of differential equation is given by

\rm :\longmapsto\:y  \times \: I.F. =  \int \: q \times I.F.dx

Let's solve the problem now!!!

Consider,

\rm :\longmapsto\:\dfrac{dy}{dx}  =  2y +   {e}^{3x} \:

\rm :\longmapsto\:\dfrac{dy}{dx}   -   2y  =   {e}^{3x} \:

On comparing with,

 \red{\rm :\longmapsto\:\dfrac{dy}{dx}  + py = q \: }

we get

\rm :\longmapsto\:\blue{ \bf \: p =  - 2 \: and \: q =  {e}^{3x}}

Now,

\rm :\longmapsto\:I.F. =  {e}^{  \: \int \: pdx}

\rm :\longmapsto\:I.F. =  {e}^{  \: \int \:  - 2dx}

\rm :\longmapsto\:I.F. =  {e}^{ - 2x}

Hence,

Solution of differential equation is

\rm :\longmapsto\:y  \times \: I.F. =  \int \: q \times I.F.dx

\rm :\longmapsto\:y  \times \:  {e}^{ - 2x}  =  \int  {e}^{ - 2x} \times  {e}^{3x}  dx

\rm :\longmapsto\:y  \times \:  {e}^{ - 2x}  =  \int  {e}^{ - 2x + 3x}dx

\rm :\longmapsto\:y  \times \:  {e}^{ - 2x}  =  \int  {e}^{x}dx

\rm :\longmapsto\:y  \times \:  {e}^{ - 2x}  =  {e}^{x} \:  +  \: c

Similar questions