Math, asked by tombasharma8628, 12 days ago

dy/dx of tan^-1(((a/b)-tanx)/(1+a/btanx))

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {tan}^{ - 1} \bigg(\dfrac{\dfrac{a}{b} \:   - \:  tanx}{1 + \dfrac{a}{b} \: tanx } \bigg)

We know,

\boxed{ \bf{ \: {tan}^{ - 1}\bigg(\dfrac{x  -  y}{1 + xy}\bigg) =  {tan}^{ - 1}x -  {tan}^{ - 1}y}}

So, using this identity, we get

\rm :\longmapsto\:y =  {tan}^{ - 1}\bigg(\dfrac{a}{b} \bigg)  -   {tan}^{ - 1}(tanx)

\rm :\longmapsto\:y =  {tan}^{ - 1}\bigg(\dfrac{a}{b} \bigg)  -  x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}\bigg( {tan}^{ - 1}\bigg(\dfrac{a}{b} \bigg) - x\bigg)

We know,

\boxed{ \bf{ \:\dfrac{d}{dx}(u + v) = \dfrac{d}{dx}u \:  +  \: \dfrac{d}{dx}v}}

So, using this, we get

\rm :\longmapsto\:\dfrac{d}{dx}y = \dfrac{d}{dx}{tan}^{ - 1}\bigg(\dfrac{a}{b} \bigg)  -  \dfrac{d}{dx}x

We know,

\boxed{ \bf{ \:\dfrac{d}{dx}k = 0}}

and

\boxed{ \bf{ \:\dfrac{d}{dx}x = 1}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx}= 0  -  1

\rm :\longmapsto\:\boxed{ \:  \:  \:  \:  \:  \bf{ \:\dfrac{dy}{dx} \: = \:  -  \:  1 \:  \:  \:  \:  \: }}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions