dy/dx of X=a(t+sint) y=a(1-cost)
Answers
Answer:
Step-by-step explanation:
Given:
- x = a (t + sin t)
- y = a (1 - cos t)
To Find:
- dy/dx
Solution:
By given,
y = a (t + sin t)
Differentiating on both sides with respect to t we get,
Now also by given,
x = a ( t + sin t)
Differentiate on both sides with respect to x,
Now dividing equation 1 by equation 2 we get,
This is the required solution.
Answer:
cot⁻¹ [ a ( 1 + cos t ) / ( sin t ) ]
Step-by-step explanation:
Given :
x = a ( t + sin t )
= > x = a t + a sin t
Diff. w.r.t. t :
d x / d t = a ( t )' + a ( sin t )'
= > d x / d t = a + a cos t
= > d x / d t = a ( 1 + cos t )
Also given :
y = ( 1 - cos t )
Diff. w.r.t. t :
= > d y / d t = ( 1 )' - ( cos t )'
= > d y / d t = - ( - sin t )
= > d y / d t = sin t
Now as we do in parametric function :
d x / d y = ( d x / d t ) / ( d y / d t )
= > d x / d y = a ( 1 + cos t ) / ( sin t )
Given d x / d y = cot P
cot P = a ( 1 + cos t ) / ( sin t )
P = cot⁻¹ [ a ( 1 + cos t ) / ( sin t ) ]
Hence we get required answer.
Answer:
cot⁻¹ [ a ( 1 + cos t ) / ( sin t ) ]
Step-by-step explanation:
Given :
x = a ( t + sin t )
= > x = a t + a sin t
Diff. w.r.t. t :
d x / d t = a ( t )' + a ( sin t )'
= > d x / d t = a + a cos t
= > d x / d t = a ( 1 + cos t )
Also given :
y = ( 1 - cos t )
Diff. w.r.t. t :
= > d y / d t = ( 1 )' - ( cos t )'
= > d y / d t = - ( - sin t )
= > d y / d t = sin t
Now as we do in parametric function :
d x / d y = ( d x / d t ) / ( d y / d t )
= > d x / d y = a ( 1 + cos t ) / ( sin t )
Given d x / d y = cot P
cot P = a ( 1 + cos t ) / ( sin t )
P = cot⁻¹ [ a ( 1 + cos t ) / ( sin t ) ]