Math, asked by moubonir1, 11 months ago

dy/dx of x(x^2 - x -2)​

Answers

Answered by Thatsomeone
2

Step-by-step explanation:

Let

y = x( {x}^{2}  - x - 2) \\  \\  \\  =  {x}^{3}  -  {x}^{2}  - 2x \\  \\  \\  \frac{dy}{dx}  =  \frac{d( {x}^{3}  -  {x}^{2}  - 2x)}{dx}  \\  \\  \\  = 3 {x}^{2}   -  2x - 2 \\  \\  \\  formula \: used \:  \\  \\  \\  \frac{d {x}^{n} }{dx}  = n {x}^{n - 1}

THANKS!!!

Answered by kaushik05
19

 \huge \red{ \mathfrak{solution}}

To find :

  \boxed { \bold{\frac{dy}{dx}  = x( {x}^{2}  - x - 2)}}

Here we use the formula :

  \huge \boxed{  \green{\bold{\frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }}}

Solution:

 \leadsto \:  \frac{d}{dx} ( {x}^{3}  -  {x}^{2}  - 2x) \\  \\  \leadsto \:  \frac{d}{dx} ( {x}^{3} ) -  \frac{d}{dx}(  {x}^{2} ) -  \frac{d}{dx} (2x) \\  \\  \leadsto \: 3 {x}^{2}  - 2x - 2

Similar questions