dy/dx = sin(x + y) + cos(x+y) differential eqs solve
Answers
Answered by
16
dydx=sin(x+y)+cos(x+y)
In it's present form this is not separable, but using the sine and cosine sum formula we have:
dydx=sinxcosy+cosxsiny+cosxcosy+sinxsiny
∴dydx=sinxcosy+sinxsiny+cosxsiny+cosxcosy
∴dydx=sinx(cosy+siny)+cosx(siny+cosy)
∴dydx=sinx(siny+cosy)+cosx(siny+cosy)
∴dydx=(siny+cosy)(sinx+cosx)
In it's present form this is not separable, but using the sine and cosine sum formula we have:
dydx=sinxcosy+cosxsiny+cosxcosy+sinxsiny
∴dydx=sinxcosy+sinxsiny+cosxsiny+cosxcosy
∴dydx=sinx(cosy+siny)+cosx(siny+cosy)
∴dydx=sinx(siny+cosy)+cosx(siny+cosy)
∴dydx=(siny+cosy)(sinx+cosx)
Answered by
63
i hope this will help u
Attachments:
akashaich0305oz7v8u:
Thanx a lot
Similar questions