Math, asked by yogeshsvasu, 3 months ago

dy/dx = tan^2(x+y) solve it​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \frac{dy}{dx}  =  \tan^{2} (x + y)  \\

 Let\: x+y=v\\ \implies 1 + \frac{dy}{dx}=\frac{dv}{dx}

 \frac{dv}{dx}  - 1 =  \tan^{2} (v)  \\

  \implies \frac{dv}{dx}  =  \sec ^{2} (v)  \\

 \implies  \cos^{2} (v) dv = dx

Integrating both sides,

 \implies   \int\cos^{2} (v) dv =  \int \: dx \\

  \implies \:  \int \frac{1 +  \cos(2v) }{2} dv =  \int \: dx \\

 \implies \frac{1}{2}   \int \: dv +  \frac{1}{2}  \int \:  \cos(2v) dv =  \int \: dx \\

 \implies \frac{v}{2}   -  \sin(2v)  = x + c \\

  \implies \frac{x}{2}  +  \frac{y}{2}  -  2\sin(x + y)  \cos(x + y)  = x + c \\

 \implies \frac{y}{2}  - 2 \sin(x + y)  \cos(x + y)  =  \frac{x}{2}  + c \\

 \implies\:y-4\sin(x+y)\cos(x+y)=x+C

Similar questions