Math, asked by harshjassal77, 7 months ago

dy/dx= x^3 + 3x^2y /x^3 + 3xy^2 solve the differential equation​

Answers

Answered by Lalitasarate
0

Answer:

answr

search

What would you like to ask?

12th

Maths

Differential Equations

Solving Homogeneous Differential Equation

Solve: (x^3 + 3xy^2) dx + (...

MATHS

Solve: (x

3

+3xy

2

)dx+(y

3

+3x

2

y)dy=0

MEDIUM

Share

Study later

ANSWER

dx

dy

=−

(y

3

+3x

2

y)

(x

3

+3xy

2

)

=−

3x

2

y(

3x

2

y

y

3

+1)

3xy

2

(

3xy

2

x

3

+1)

=−

x(

3x

2

y

2

+1)

y(

3y

2

x

2

+1)

dx

dy

=f(

x

y

)

⇒ the given differential equation is a homogeneous equation.

The solution of the given differential equation is :

Put y=vx

dx

dy

=v+x

dx

dv

v+x

dx

dv

=−

x(

3x

2

(vx)

2

)+1

vx(

3(vx)

2

x

2

+1)

=−v

(

3

(v)

2

+1)

(

3(v)

2

1

+1)

=−

3+(v)

2

1+3(v)

2

×

v

1

=−

3v+(v)

3

1+3(v)

2

⇒x

dx

dv

=−

3v+(v)

3

1+3(v)

2

−v=−

3v+(v)

3

1+3(v)

2

+3(v)

2

+(v)

4

=

3v+(v)

3

1+6(v)

2

+(v)

4

1+6(v)

2

+(v)

4

3v+(v)

3

dv=−

x

dx

Integrating both the sides we get:

⇒∫

1+6(v)

2

+(v)

4

3v+(v)

3

dv=−∫

x

dx

+c

As we know that,

dv

d

(1+6(v)

2

+(v)

4

)=12v+4v

3

=4(3v+v

3

)

4

ln∣1+6(v)

2

+(v)

4

+ln∣x∣=ln∣c∣

Resubstituting the value of y=vx we get

4

ln∣1+6(

x

y

)

2

+(

x

y

)

4

+ln∣x∣=ln∣c∣

⇒y

4

+6x

2

y

2

+x

3

4=C

Ans :⇒y

4

+6x

2

y

2

+x

3

4=C

Similar questions