Math, asked by wajhatulhassan4, 2 months ago

dy/dx+y=3e^xy^3plz solve it​

Answers

Answered by senboni123456
3

Step-by-step explanation:

We have,

 \frac{dy}{dx}   + y = 3 {e}^{x}  {y}^{3}  \\

  \implies( {y}^{ - 3} )\frac{dy}{dx}   + y^{ - 2}  = 3 {e}^{x}  \\

Let \:  \:  {y}^{ - 2}  = v \\  \implies - 2 {y}^{ - 3}  \frac{dy}{dx}  =  \frac{dv}{dx}  \\   \implies {y}^{ - 3}  \frac{dy}{dx}   =  - \frac{1}{2}  \frac{dv}{dx}

  \implies  - \frac{1}{2} \frac{dv}{dx}   + v  = 3 {e}^{x}  \\

  \implies  \frac{dv}{dx}    - 2 v  =  - 6{e}^{x}  \\

I.F. =  {e}^{ \int( - 2)dx}  =  {e}^{ - 2x}

Now,

v. {e}^{ - 2x}  =  \int( - 6) {e}^{x} . {e}^{ - 2x} dx \\

 \implies \: v. {e}^{ - 2x}  =  - 6 \int  {e}^{ -x} dx \\

 \implies \: v. {e}^{ - 2x}  =  6  {e}^{ -x} +C \\

 \implies \:  {y}^{ - 2}  =  6  {e}^{ x} +C {e}^{2x}  \\

Answered by rinayjainsl
1

Answer:

The solution of the equation is

y =  \frac{1}{ \sqrt{6 {e}^{x}  + ce {}^{2x} } }

Step-by-step explanation:

The given differential equation is

 \frac{dy}{dx}  + y = 3 {e}^{x}  {y}^{3}

We shall convert this into a linear differential equation by dividing both sides with the highest degree variable.Hence,

 \frac{1}{ {y}^{3} } . \frac{dy}{dx}  +  \frac{1}{ {y}^{2} }  = 3 {e}^{x}

Let us assume that,

 \frac{1}{ {y}^{2} }  = t  \\ =  >  \frac{ - 2}{ {y}^{3} }  \frac{dy}{dx}  =  \frac{dt}{dx}  \\  =  > \frac{ 1}{ {y}^{3} }  \frac{dy}{dx} =  \frac{ - 1}{2} . \frac{dt}{dx}

Substituting these terms in our differential equation,we get

 -  \frac{1}{2}  \frac{dt}{dx}  + t = 3 {e}^{x}

Multiplying both the sides with -2,we get

 \frac{dt}{dx}  - 2t =  - 6 {e}^{x}

This is an linear differential equation in variable t.

Its integrating factor is

 {e}^{ \int - 2dx}  =  {e}^{ - 2x}

Hence the solution of our equation is

t(I.F)=\int(-6e^{x}(I.F))dx

Substituting the value of integrating factor in above relation,we get

t. {e}^{ - 2x}  =  \int - 6 {e}^{x} ( {e}^{ - 2x} )dx \\  =  > t {e}^{ - 2x}  = 6 {e}^{ - x}  + c \\  =  > t = 6 {e}^{x}  + ce {}^{2x}  \\  =  >  \frac{1}{ {y}^{2} }  = 6 {e}^{x}  + ce {}^{2x}  \\  =  > y =  \frac{1}{ \sqrt{6 {e}^{x}  + ce {}^{2x} } }

Therefore,the solution of the equation is

y =  \frac{1}{ \sqrt{6 {e}^{x}  + ce {}^{2x} } }

#SPJ3

Similar questions