dy/dx+y cosx+siny+y/sinx+x cosy+x=0
Answers
Answered by
2
please send me the picture of the sum
Answered by
0
Step-by-step explanation:
Given Dy/dx+ y cosx+siny+y/sinx+x cosy+x = 0
- dy / dx + ycosx + siny + y / sin x + x cos y + x = 0
- dy / dx = - (y cosx + sin y + y ) / (sin x + x cos y + x)
- Cross multiplying we get
- sin x dy + x cos y + x. dy = - y cos x dx – sin y dx – y dx)
- sin x dy + x cos y dy + x dy + y cos x dx + sin y dx + y dx = 0
- So (uv)’ = u’v + uv’
- (sin x dy + y cos x dx) + (xcosy dy + siny.dx) + (x.dy + y dx) = 0
- So dx = differentiation of x
- (sinx(y)’ + y(sinx)’ + (x (sin y)’ + siny(x)’) + (x (y)’ + y(x)’) = 0
- So (uv)’ = (u’)v + u(v’)
- (sin x(y))’ + (x sin y)’ + (xy)’ = 0
- So ∫d(y sin x) + d(x sin y) + d (xy) = ∫0
- So ∫dx = x
- y sinx + x sin y + xy + c = 0
Reference link will be
https://brainly.in/question/12264102
Similar questions