Math, asked by omorant12, 11 months ago

(dy/dx) + y/sqrt{x}=x what is the integrating factor

Answers

Answered by saketgurjar2402
0

Answer:

e^{2\sqrt{x}}

Step-by-step explanation:

\frac{dy}{dx} + \frac{y}{\sqrt{x}} =x

For a linear DE: y' +P(x).y = Q(x)

the Integrating factor is e^{\int P(x)\,dx}

So here the P(x) is \frac{1}{\sqrt{x}}

Thus the integrating factor is :

= e^{\int P(x)\,dx} \\=e^{\int \frac{1}{\sqrt{x}}\,dx}\\=e^{\int x^{-\frac{1}{2}} \,dx }\\=e^{\frac{x^{\frac{1}{2}}}{\frac{1}{2}}}\\=e^{2\sqrt{x}}

Similar questions