Math, asked by gajendrababu, 1 month ago

dy/dx+y.tanx=y^2secx

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{\dfrac{dy}{dx}+y\,tan(x)=y^2\,sec(x)}

\sf{\implies\dfrac{1}{y^2}\cdot\dfrac{dy}{dx}+\dfrac{1}{y}\cdot\,tan(x)=sec(x)}

\sf{Put\,\,\,\dfrac{1}{y}=v}

\sf{\implies-\dfrac{1}{y^2}\dfrac{dy}{dx}=\dfrac{dv}{dx}}

So,

\sf{\implies-\dfrac{dv}{dx}+v\,tan(x)=sec(x)}

\sf{\implies\dfrac{dv}{dx}-v\,tan(x)=-\,sec(x)}

\sf{I.F.=e^{\displaystyle\int-tan(x)\,dx}}

\sf{=e^{ln|cos(x)|}}

\sf{=cos(x)}

Now,

\sf{v\cdot\,cos(x)=\displaystyle\int-sec(x)\cdot\,cos(x)\,dx}

\sf{\implies\,v\cdot\,cos(x)=\displaystyle\int(-1)\,dx}

\sf{\implies\,v\cdot\,cos(x)=-x+C}

\sf{\implies\,\dfrac{cos(x)}{y}=-x+C}

Similar questions