Math, asked by sajjusheikh035, 10 months ago

dy/dx+y tanx=y sec x​

Answers

Answered by Anonymous
7

Answer:

\large\bold\red{c =  \frac{y}{|1 +  \sin(x)| }}

Step-by-step explanation:

Given,

A differential equation,

  •  \frac{dy}{dx}  + y \tan(x)  = y \sec(x)

To solve the given Equation,

Divide both sides with y,

We get,

 =  >  \frac{dy}{ydx}  +  \frac{y \tan(x) }{y}  =  \frac{y \sec(x) }{y}  \\  \\  =  >  \frac{dy}{ydx}  +  \tan(x)  =  \sec(x)  \\  \\  =  >  \frac{dy}{ydx}  =  \sec(x)  -  \tan(x)  \\  \\  =  >  \frac{dy}{y}  = ( \sec(x)  -  \tan(x) )dx

Now,

Integrating on both sides,

We get,

 =  > \int \frac{dy}{y}  = \int( \sec(x) -  \tan(x))  dx \\  \\  =  > \int \frac{dy}{y}  = \int \sec(x) dx - \int \tan(x) dx

But,

We know that,

  • \bold{\int \frac{dy}{y}  =  ln(y)}

  • \bold{\int \sec(x) dx =  ln| \sec(x)  +  \tan(x) |  }

  • \bold{\int \tan(x) dx =  -  ln | \cos(x) |}

Therefore,

Putting the respective values,

We get,

 =  >  ln(y)  =   ln | \sec(x) +  \tan(x)  | - ( -  ln | \cos(x) |) +  ln(c) \\  \\  =  >  ln(y)     =  ln | \sec(x) +  \tan(x)  | +  ln | \cos(x) |    +  ln(c)

But,

We know that,

  •  \bold{ln(a)  +  ln(b)  =  ln(ab) }

Therefore,

We get,

 =  >  ln(y)  =  ln | \cos  x ( \sec x  +  \tan x) | +  ln(c)   \\  \\  =  >  ln(y)  =  ln|1 +  \sin(x) |  +  ln(c) \\  \\ =  >  ln(y)   =  ln |c(1 +  \sin x) |  \\  \\   =  > y = c(|1 +  \sin x|)  \\  \\  =  > c =  \frac{y}{|1 +  \sin(x)| }

Hence,

Solution of the differential equation is

  • \large\bold{c =  \frac{y}{|1 +  \sin(x) |} }
Similar questions
Math, 1 year ago