Math, asked by ramsujith567, 1 month ago

dy/dx+ycosx=y^3sin2x​

Answers

Answered by shanthibabu1551
6

Step-by-step explanation:

give dy/dx+ycosx=y^3sin2x-------'1'

Above equation is

1/y^3 dy/dx +cosx (1/y^2)=sin 2x-------''2''

1/y^2=Z

-2/y^3 dy/dx=dz/dx

1/y^3 dy/dx = -1/2 dz/dx

Substituting the value in2 we get

-1/2 dz/dx +cosx.z=sin2x

z. dz/dx -2cosx.z=-2sin2x----------"3"

"3" is of the form dz/dx+p(x) z=Q(x)

p(x) =-2cosx, Q(x) = -2sin2x

I. F =e^-2sinx

where sinx=t

cosxdx= dt

=e^t(1-t)+c

1/y^2 e^-2sinx =(1+2sinx)e^-2sinx+c

Answered by hukam0685
0

The solution of the differential equation is \bf  \frac{1}{ {y}^{2} }   {e}^{ - 2sinx } =  (2 \: sin \: x +1) {e}^{ - 2sin \: x}  + C \\

Given:

  •  \frac{dy}{dx}  + y \: cos \: x =  {y}^{3}sin \: 2x \\

To find:

  • Find the solution of differential equation.

Solution:

Formula to be used:

  • Linear differential equation:\bf \frac{dy}{dx}  + Py = Q...eq1 \\
  • Solution of this differential equation\boxed{\bf y. \:I.F. =  \int \: Q. \: I.F.\: dx} \\ here I.F. =  {e}^{ \int  P \: dx}  \\
  • Integration by parts: \bf \int UV dx=U\int V dx-\int\left(\frac{dU}{dx}\int\: Vdx\right)dx\\

Step 1:

Simplify the equation.

Divide the equation by y³.

 \frac{1}{ {y}^{3} }  \frac{dy}{dx}  +  \frac{1}{ {y}^{2} }  \: cos \: x =sin \: 2x \\

Let

 \frac{1}{ {y}^{2} }  = t \\

 -  \frac{2}{ {y}^{3} }  \frac{dy}{dx}  =  \frac{dt}{dx}  \\

Substitute the values in the equation.

 -  \frac{1}{2}  \frac{dt}{dx}  + t \: cosx = sin \: 2x \\

or

\frac{dt}{dx}   - 2 t \: cosx =  - 2sin \: 2x ...eq2\\

Compare the equation 2 with standard equation.

It is clear that

\bf P =  - 2 \: cos \: x \\

\bf Q =  - 2 \: sin \: 2x \\

Step 2:

Find the solution of linear equation.

Calculate I.F.

I.F. =  {e}^{ \int \: P \: dx}  \\

I.F. =  {e}^{ \int  - 2cosx \: dx}  \\

I.F. =  {e}^{  - 2sin \: x } ...eq3 \\

Now the solution of differential equation is

t \: (I.F.) =  \int \:Q.( I.F.) \: dx

Put the value of IF from eq3 .

t  {e}^{ - 2sinx } =  \int \:  - 2sin \: 2x  \: {e}^{ - 2 \: cos \: x} dx...eq4  \\

Step 3:

Substitute the RHS to integrate.

Rewrite eq4

As we know that sin2x = 2sinx cos x

t  {e}^{ - 2sinx } =  \int \:  - 2sin \: x \: .2cos \: x . \: {e}^{ - 2 \: sin \: x} dx  \\

Let

 - 2 \: sin \: x = v \\

 - 2 \: cos \: x \: dx = dv \\

Substitute the values.

t  {e}^{ - 2sinx } =  -  \int \:  v\: {e}^{v} dv \\

Apply integration by parts in RHS.

t  {e}^{ - 2sinx } =  - v \int{e}^{v} dv +  \int \: \left(  \frac{dv}{dv} \int{e}^{v} dv  \right)dv \\

t  {e}^{ - 2sinx } =  - v {e}^{v} +  \int \:  1.{e}^{v} dv \\

t  {e}^{ - 2sinx } =  - v {e}^{v} + {e}^{v}  + C \\

Undo substitution

t  {e}^{ - 2sinx } =  2 \: sin \: x {e}^{ - 2 \: sin \: x} + {e}^{ - 2sin \: x}  + C \\

Put the value of t also.

 \frac{1}{ {y}^{2} }   {e}^{ - 2sinx } =  2 \: sin \: x {e}^{ - 2 \: sin \: x} + {e}^{ - 2sin \: x}  + C \\

 \frac{1}{ {y}^{2} }   {e}^{ - 2sinx } =  (2 \: sin \: x +1) {e}^{ - 2sin \: x}  + C \\

Thus,

The solution of the differential equation is \bf  \frac{1}{ {y}^{2} }   {e}^{ - 2sinx } =  (2 \: sin \: x +1) {e}^{ - 2sin \: x}  + C \\

Learn more:

1) Solve the differential equation: \frac{dy}{dx}=x \sqrt{25-x^{2}}

https://brainly.in/question/6640358

2) Solve the differential equation: \sec^{2}x\cdotp\tan ydx+\sec^{2}y\cdotp\tan xdy=0

https://brainly.in/question/6640355

#SPJ2

Similar questions