dy
The for the function cos
x + cos² y = cos(2x +2y)
da
where y is a function of x, is
OPTIONS
a.
cos 2x + 2 cos(2x + 2y)
- 2 cos(2x + 2y) - cos 2y
b.
sin 2x - 2 sin(2x + 2y)
2 sin(2x + 2y) - sin 2y
C.
cos 2x - 2 cos(2. + 2y)
2 cos(2x + 2y) - cos 2y
d.
sin 2x + 2 sin(2x + 2y)
-2 sin(2x + 2y) - sin 2y
Answers
Answered by
0
Answer:
z=x+y
cos
2
x+cos
2
y+cos
2
z−2cosx.cosy.cosz
=cos
2
x+cos
2
y+cos
2
(x+y)−2cosx.cosy.cos(x+y)
=cos
2
x+cos
2
y+(cosxcosy−sinxsiny)
2
−2cosxcosy[cosxcosy−sinxsiny]
=cos
2
x+cos
2
y+cos
2
xcos
2
y+sin
2
xsin
2
y−2cosxcosysinxsiny−2cos
2
xcos
2
y+2cosxcosysinxsiny
=cos
2
x+cos
2
y−cos
2
xcos
2
y+sin
2
xsin
2
y
=cos
2
x+cos
2
y−cos
2
xcos
2
y+sin
2
x(1−cos
2
y)
=cos
2
x+cos
2
y−cos
2
xcos
2
y+sin
2
x−sin
2
xcos
2
y
=cos
2
x+sin
2
x+cos
2
y−cos
2
y(cos
2
x+sin
2
x)
=1
Similar questions