Math, asked by babiaxm, 10 hours ago

e^2x (2cosydx - sinydy)=0​

Answers

Answered by vipan336
1

Step-by-step explanation:

this is the required solution of this question.

om sai ram

Attachments:
Answered by hotelcalifornia
0

Step-by-step explanation:

Given:

e^{2x} (2cosydx - sinydy)=0

To find:

The corresponding particular solution of e^{2x} (2cosydx - sinydy)=0.

Solution:      

Given that,

e^{2x} (2cosydx - sinydy)=0

It can be simplified as follows,

e^{2x} (2cos(y)dx - sin(y)dy)=0

e^{2x} 2cos(y)dx - e^{2x} sin(y)dy=0  

Its general form is,  

M(x,y)dx+M(x,y)dy=0    

2e^{2x}cos(y)dx - (e^{2x} sin(y)dy)=0  

Where,

M=2e^{2x}cos(y)dx,N=e^{2x} sin(y)dy  

Check: \frac{dM}{dy}= \frac{dN}{dx}

\frac{dM}{dy}=-2e^{2x} sin(y),\frac{dN}{dx} =-2e^{2x}sin(y) Exact  

and,

f(y,x)=M dx+g(y)  ⇒ Where,  f(x,y)=C, g(y)=Integer constant

f(x,y)=2e^{2x} cos(y)dx+g(y)=e^{2x} cos(y)+g(y)

 \frac{df}{dy}=N To get g(y)  

∴  \frac{df}{dy} =-e^{2x} siny+g'(y), N=-e^{2x} siny              

g'(y)=0  ⇒ g(y)=C

f(x,y)=e^{2x} cos(y)=C  

The solution is y=cos^{-1} (\frac{C}{e^{2x} } )

Answer:

The corresponding particular solution of e^{2x} (2cosydx - sinydy)=0 is  y=cos^{-1} (\frac{C}{e^{2x} } ).  

Similar questions