(e-5)(e+6)=0
tell me the true answer
Answers
Answer:
Hey friend,
Here's my answer: (e-5)(e+6) = 0
<=> Or : e - 5 =0
Or: e + 6 =0
<=> Or : e = 5
Or : e = -6
Hope it helps
Please mark this brainliest! :)
Step-by-step explanation:
First Possible Question
Simplify ⇒ (e - 5)(e + 6) = 0
_______________________________
Answer To First Possible Question
(e - 5)(e + 6) = 0 can also be written as → (e - 5)(e + 6)
Here we need to multiply binomial to another binomial.
⇒ (e - 5)(e + 6)
We will now split the expression into simper forms to solve.
⇒ (e - 5)(e + 6)
⇒ e (e + 6) - 5 (e + 6)
Next we will multiply using distributive property.
Distributive Property ⇒ a (b + c) = ab + ac
⇒ e (e + 6) - 5 (e + 6)
⇒ e (e) + e (6) - 5 (e) - 5 (6)
⇒ e² + 6e - 5e - 30
Now we will simplify further by subtracting the like terms.
⇒ e² + 6e - 5e - 30
⇒ e² + e - 30
∴ (e - 5)(e + 6) = e² + e - 30
_______________________________
Second Possible Question
Find value of 'e' using quadratic formula.
_______________________________
Answer To Second Possible Question
Let's solve your equation step-by-step.
⇒ (e - 5)(e + 6) = 0
Step 1: Simplify both sides of the equation.
⇒ (e - 5)(e + 6) = 0
⇒ e (e + 6) - 5 (e + 6) = 0
⇒ e (e) + e (6) - 5 (e) - 5 (6) = 0
⇒ e² + 6e - 5e - 30 = 0
⇒ e² + e - 30 = 0
For this equation:
- a = 1
- b = 1
- c = -30
⇒ 1e² + 1e + -30 = 0
Step 2: Use quadratic formula with a = 1, b = 1, c = -30.
⇒
⇒
⇒
⇒
⇒
⇒ e = 5 or e = -6
∴ The value of 'e' in the equation (e - 5)(e + 6) could be either 5 or -6.
_______________________________