Math, asked by uroobamursalin, 5 months ago

(e-5)(e+6)=0

tell me the true answer

Answers

Answered by hakainightmare
2

Answer:

Hey friend,

Here's my answer: (e-5)(e+6) = 0

                            <=> Or : e - 5 =0

                                   Or: e + 6 =0

                            <=> Or : e = 5

                                   Or : e = -6

Hope it helps

Please mark this brainliest! :)

Step-by-step explanation:

Answered by spacelover123
14

First Possible Question

Simplify ⇒ (e - 5)(e + 6) = 0

_______________________________

Answer To First Possible Question

(e - 5)(e + 6) = 0 can also be written as → (e - 5)(e + 6)

Here we need to multiply binomial to another binomial.

⇒ (e - 5)(e + 6)

We will now split the expression into simper forms to solve.

⇒ (e - 5)(e + 6)

⇒ e (e + 6) - 5 (e + 6)

Next we will multiply using distributive property.

Distributive Property ⇒ a (b + c) = ab + ac

⇒ e (e + 6) - 5 (e + 6)

⇒ e (e) + e (6) - 5 (e) - 5 (6)

⇒ e² + 6e - 5e - 30

Now we will simplify further by subtracting the like terms.

⇒ e² + 6e - 5e - 30

⇒ e² + e - 30

∴ (e - 5)(e + 6) = e² + e - 30

_______________________________

Second Possible Question

Find value of 'e' using quadratic formula.

_______________________________

Answer To Second Possible Question

Let's solve your equation step-by-step.

⇒ (e - 5)(e + 6) = 0

Step 1: Simplify both sides of the equation.

⇒ (e - 5)(e + 6) = 0

⇒ e (e + 6) - 5 (e + 6) = 0

⇒ e (e) + e (6) - 5 (e) - 5 (6) = 0

⇒ e² + 6e - 5e - 30 = 0

⇒ e² + e - 30 = 0

For this equation:

  • a = 1
  • b = 1
  • c = -30

⇒ 1e² + 1e + -30 = 0

Step 2: Use quadratic formula with a = 1, b = 1, c = -30.

e = \dfrac{-b\± \sqrt{b^{2}-4ac}}{2a}

e = \dfrac{-1\± \sqrt{1^{2}-4(1)(-30)}}{2(1)}

e = \dfrac{-1\± \sqrt{1-(-120) }}{2(1)}

e = \dfrac{-1\± \sqrt{1+120 }}{2(1)}

e = \dfrac{-1\± \sqrt{121 }}{2}

⇒ e = 5 or e = -6

∴ The value of 'e' in the equation (e - 5)(e + 6) could be either 5 or -6.

_______________________________

Similar questions