Math, asked by talpadav841, 6 months ago

E and F are points on the sides PQ and PR respectively of a ∆PQR for each of the following cases, state whether EF||QR:​

Answers

Answered by varungorle66
3

Step-by-step explanation:

REFQZis answer ok bye ok

Answered by Anonymous
59

Question :-

  • E and F are points on the sides PQ and PR respectively of a ∆PQR for each of the following cases, state whether EF||QR:

To find :-

  • E and F are points on the sides PQ and PR respectively of a ∆PQR

Solution :-

Case 1st :-

(i) PE = 3.9 cm, EQ = 3 cm and PF = 3.6 cm, FR =

F2.4 cm

\large{ \sf \underline{ ╬ \:  Using \:  Basic  \: proportionality \:  theorem \:  ╬ \: \: }}

</p><p>\bold{∴ \dfrac{ PE}{EQ}} =  \dfrac{3.9}{3}  =  \dfrac{39}{30}  =  \dfrac{13}{10}  = 1.3

\bold{  \dfrac{ PF}{FR} } =  \dfrac{3.6}{2.4}  =  \dfrac{36}{24}  =  \dfrac{3}{2}  = 1.5

 \bold{\dfrac{ PE}{ EQ} }≠  \bold{ \dfrac{ PF}{FR}}

So, EF is not parallel to QR.

Case 2 :-

(ii) PE = 4 cm, QE = 4.5 cm, PF = 8 cm, RF = 9 cm

\large{ \sf \underline{ ╬ \:  Using \:  Basic  \: proportionality \:  theorem \:  ╬ \: \: }}

\bold{∴ \dfrac{ PE}{QE}} =  \dfrac{4}{4.5}  =  \dfrac{40}{45} =  \dfrac{8}{9}

\bold{  \dfrac{ PF}{FR} } =  \dfrac{8}{9}

 \bold{ \dfrac{ PE}{QE}} = \bold{ \dfrac{ PF}{FR}}

So, EF is parallel to QR.

Case 3 :-

(iii) PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm, PF = 0.36 cm

\large{ \sf \underline{ ╬ \:  Using \:  Basic  \: proportionality \:  theorem \:  ╬ \: \: }}

EQ = PQ − PE = 1.28 − 0.18 = 1.10 cm

FR = PR − PF = 2.56 − 0.36 = 2.20 cm

 \bold{\dfrac{ PE}{ EQ} } =  \dfrac{0.18}{1.10}  =  \dfrac{18}{110}  =  \dfrac{9}{55} ...(1)

\bold{  \dfrac{ P E}{FR} } =  \dfrac{0.36}{2.20}  =  \dfrac{36}{220}  =  \dfrac{9}{55} ..(2)

\bold{∴\dfrac{ PE}{EQ}}= \bold{ \dfrac{ PF}{FR}}

So, EF is parallel to QR.

Attachments:
Similar questions