Math, asked by LunaSeline, 11 months ago

e^f(x) =10+x/10-x
x€(-10,10)
f(x)=k.f(200x/100+x^2)
Then k is equal to?
1) 0.5
2) 0.6
3) 0.7
4) 0.8

Answers

Answered by MaheswariS
9

\underline{\textsf{GIVEN:}}

\mathsf{e^{f(x)}=\dfrac{10+x}{10-x}\;\;and\;\;f(x)=k\,f\left(\dfrac{200x}{100+x^2}\right)}

\underline{\textsf{TO FIND:}}

\textsf{The value of k}

\underline{\textsf{SOLUTION:}}

\mathsf{Consider,}

\mathsf{e^{f(x)}=\dfrac{10+x}{10-x}}

\textsf{Take logarithm on bothsides, we ge}

\mathsf{\log{e^{f(x)}}=\log\left(\dfrac{10+x}{10-x}\right)}

\mathsf{f(x)\,\log\,e=\log\left(\dfrac{10+x}{10-x}\right)}

\implies\mathsf{f(x)=\log\left(\dfrac{10+x}{10-x}\right)}

\mathsf{Now,}

\mathsf{f(x)=k\,f\left(\dfrac{200x}{100+x^2}\right)}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=k\,\log\left(\dfrac{10+\dfrac{200x}{100+x^2}}{10-\dfrac{200x}{100+x^2}}\right)}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=k\,\log\left(\dfrac{\dfrac{1000+10x^2+200x}{100+x^2}}{\dfrac{1000+10x^2-200x}{100+x^2}}\right)}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=k\,\log\left(\dfrac{10x^2+200x+1000}{10x^2-200x+1000}\right)}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=k\,\log\left(\dfrac{10(x^2+20x+100)}{10(x^2-20x+100)}\right)}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=k\,\log\left(\dfrac{x^2+20x+100}{x^2-20x+100}\right)}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=k\,\log\left(\dfrac{(10+x)^2}{(10-x)^2}\right)}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=k\,\log\left(\dfrac{10+x}{10-x}\right)^2}

\textsf{Using power rule of logarithm, we get}

\mathsf{\log\left(\dfrac{10+x}{10-x}\right)=2k\,\log\left(\dfrac{10+x}{10-x}\right)}

\mathsf{1=2k}

\implies\mathsf{k=\dfrac{1}{2}}

\implies\boxed{\mathsf{k=0.5}}

\underline{\textsf{ANSWER:}}

\textsf{Option (1) is correct}

Answered by Dhruvan13383
0

Answer:

[math/100 + x] = [math/100 - x]

Similar questions