Math, asked by vaanibisht, 10 months ago

e Find the value of k for which the system
of equations
5x-3y =0 and 2x+ky=0
has a non-zero solution​

Answers

Answered by Anonymous
6

\large{\underline{\bf{\purple{Given:-}}}}

  • ✦ Equations :-

  • 5x - 3y = 0
  • 2x + ky = 0

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • ✦ Value of k

\huge{\underline{\bf{\red{Solution:-}}}}

The given equations are :-

  • 5x - 3y =0
  • 2x + ky = 0

These equations are of the form

  • \rm\:a_1x+b_1y+c_1=0
  • \rm\:a_2x+b_2y+c_2=0

where,

  • a1 = 5
  • b1 = -3

  • a2 =2
  • b2 = k

: \mapsto   \rm\: \frac{a_1 }{a_2}  =  \frac{5}{2} \:  ,\:\:\frac{b_1}{b_2} =  \frac{ - 3}{k}  \\  \\: \mapsto   \rm\:it \: is \: given \: that \: the \: equations \: have \\  \rm \: non-zero \: solution \:  \\  \\ : \mapsto   \rm\:then \:  \frac{a_1}{a_2} =  \frac{b_1}{b_2}    \\  \\ : \mapsto   \rm\: \frac{5}{2}   =  \frac{ - 3}{k} \\  \\ : \mapsto   \rm\:5k =  - 6 \\  \\ : \mapsto   \bf\:k =  \frac{ - 6}{5}   \\\\

So k = -6/5

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions