Math, asked by aryax2710, 7 months ago


(e) Find using Cramer's rule,
x+y = 5, y +z = 8, z + x = 7​

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{x+y=5}

\mathsf{y+z=8}

\mathsf{z+x=7}

\textbf{To find:}

\textsf{Solution of given system of equations}

\textbf{Solution:}

\mathsf{\triangle=\left|\begin{array}{ccc}1&1&0\\0&1&1\\1&0&1\end{array}\right|}

\mathsf{\triangle=1(1-0)-1(0-1)+0}

\mathsf{\triangle=1+1}

\mathsf{\triangle=2}

\mathsf{{\triangle}_x=\left|\begin{array}{ccc}5&1&0\\8&1&1\\7&0&1\end{array}\right|}

\mathsf{{\triangle}_x=5(1-0)-1(8-7)+0}

\mathsf{{\triangle}_x=5-1}

\mathsf{{\triangle}_x=4}

\mathsf{{\triangle}_y=\left|\begin{array}{ccc}1&5&0\\0&8&1\\1&7&1\end{array}\right|}

\mathsf{{\triangle}_y=1(8-7)-5(0-1)+0}

\mathsf{{\triangle}_y=1+5+0}

\mathsf{{\triangle}_y=6}

\mathsf{{\triangle}_z=\left|\begin{array}{ccc}1&1&5\\0&1&8\\1&0&7\end{array}\right|}

\mathsf{{\triangle}_z=1(7-0)-1(0-8)+5(0-1)}

\mathsf{{\triangle}_z=7+8-5}

\mathsf{{\triangle}_z=10}

\textsf{By Cramer's rule}

\mathsf{x=\dfrac{\triangle_x}{\triangle}}

\mathsf{x=\dfrac{4}{2}=2}

\mathsf{y=\dfrac{\triangle_y}{\triangle}}

\mathsf{y=\dfrac{6}{2}=3}

\mathsf{z=\dfrac{\triangle_z}{\triangle}}

\mathsf{z=\dfrac{10}{2}=5}

\therefore\textsf{The solution is x=2, y=3 and z=5}

Find more:

Find x,y,z using cramers rule, if x-y+z=4, 2x+y-3z=0 and x+y+z=2

https://brainly.in/question/9052433

By Using cramer's rule solve the given linear equations.

x + y-Z=1; 8x + 3y - 6Z=1; 4x - y +3Z =1​

https://brainly.in/question/13937905

Apply Cramer’s rule to solve the following equations. 3x + y + 2z = 3 2x – 3y –z = -3 X +2y +z = 4​

https://brainly.in/question/30042902

Similar questions