Math, asked by gkrishnachaitanya, 6 months ago

e) If the total surface area of a cuboid is 432 ma and the ratio of length, breadth and
height is 6:4:3, then height of the cuboid is
() 24 m
(ii) 16 m
(iii) 6 m
(iv) 4 m​

Answers

Answered by itzcutiemisty
20

Answer:

(iii) 6 m ✔

Step-by-step explanation:

\underline{\bigstar\:\textsf{Given:}}

  • TSA of cuboid = 432 m²
  • Ratio of l, b and h = 6:4:3

\underline{\bigstar\:\textsf{To\:find:}}

  • Height = ?

\underline{\bigstar\:\textsf{Solution:}}

Let the length be 6x, breadth be 4x and height be 3x.

We are given with the TSA of cuboid. We know that \pink{\sf{TSA\:of\:cuboid\:=\:2(lb\:+\:bh\:+\:hl).}}

(Putting value for x)

\longrightarrow 432 = 2(6x × 4x + 4x × 3x + 3x × 6x)

\longrightarrow 216 = 24x² + 12x² + 18x²

\longrightarrow 216 = 54x²

\longrightarrow\:\sf{\cancel\dfrac{216}{54}\:=\:x^2}

\longrightarrow 4 = x²

\longrightarrow\:\sf{\sqrt{4}\:=\:x}

\longrightarrow 2 = x

We have found the value of x i.e, 2.

So, the length = 6x = 6 × 2 = 12 m

breadth = 4x = 4 × 2 = 8 m

height = 3x = 3 × 2 = 6 m

{\large{\boxed{\sf{\therefore \:Height\:is\:6\:m}}}}

Similar questions