(e) In triangle ABC tanA=1,tanB=2 then tanC=. ?
Answers
tanC=3 : Answer .
Step-by-step explanation:
tan A = 1
A = tan−11 = 45 deg
tan B = 2
B = tan−1 2 = 63.43 deg
C = 180 - (A + B) = 180 - 108.43 = 81.57 deg
tan C = tan(81.57) = tan(180 - 63.43) = -(tan 180 + tan 63.43)/(1 - tan 180 * tan 63.43)
tan C = -(1 + 2)/(1 - (1 * 2)) = -3/(-1) = 3
The value of tan C is 3.
GIVEN: In triangle ABC, TanA=1, TanB=2
TO FIND: Value of Tan C
SOLUTION:
As we are given in the question,
A triangle ABC With,
Tan A = 1 and Tan B = 2
As we know,
Tan A = 1
A = tan⁻¹ 1
A= 45 deg
Also
Tan B = 2
B = tan⁻¹2
B = 63.43 deg
Now,
Using the angle sum property,
We know,
Angle A + Angle B + Angle C = 180 deg
45 + 63.43 + Angle C = 180 deg
Angle C = 180 - (45 + 63.43)
Angle C = 180 - 108.43
Angle C = 81.57 deg
Now,
C = 81.57
Taking tan both sides
Tan C = Tan(81.57)
Tan C = Tan(180 - 63.43)
Tan C = -(tan 180 + tan 63.43)/(1 - tan 180 * tan 63.43)
Tan C = -(1 + 2)/(1 - (1 * 2))
Tan C = -3/(-1)
Tan C = 3
Therefore,
The required value of tan C is 3.
#SPJ2