Math, asked by sandhyadixit538, 3 months ago

(e) The length, breadth and height of a cuboid are 4
m, 3 m and 5 m. The length of the largest rod that
can be put in it will be:


Answers

Answered by student212
0

Answer:

5

 \sqrt{2}

Step-by-step explanation:

please mark as brainliest if it helped you

Attachments:
Answered by ʝεɳყ
38

Given :

  • Length = 4m
  • Breadth = 3m
  • Height = 5m

To Find :

  • The length of the largest rod

Solution :

So, we've l = 4m, b = 3m, h = 5m

 Diagonal  \: of \: cuboid =\sqrt{ {l}^{2} +   {b}^{2}   +  {h}^{2}  }    \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \sqrt{  {4}^{2}  +  {3}^{2} +  {5}^{2}   }  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \sqrt{16 + 9 + 25} \\  \ \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = \sqrt{50}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \sqrt[5]{2}

Formula used :

Diagonal of cuboid =  \sqrt{ {l}^{2} +   {b}^{2}   +  {h}^{2}  }

Similar questions