(e) (x + 1)(3 - cot 30 ) = tan^3 (60 ) - 2sin 60 degrees . find the value of x
Answers
Answered by
0
Answer:
This is your answer. Mark me the brain lest
Step-by-step explanation:
L.H.S: (√3 + 1) (3 – cot 30°) = (√3 + 1) (3 – √3) [∵cos 30° = √3] = (√3 + 1) √3 (√3 – 1) [∵(3 – √3) = √3 (√3 – 1)] = ((√3)2– 1) √3 [∵ (√3+1)(√3-1) = ((√3)2 – 1)] = (3-1) √3 = 2√3 Similarly solving R.H.S: tan3 60° – 2 sin 60° Since, tan 60o = √3 and sin 60o = √3/2, We get, (√3)3 – 2.(√3/2) = 3√3 – √3 = 2√3 Therefore, L.H.S = R.H.S Hence, proved.Read more on Sarthaks.com - https://www.sarthaks.com/884517/prove-3-1-3-cot-30-tan-360-2-sin-60
Answered by
1
x+1)(3-√3)=3√3--√3
3x+3-√3x-√3=√3(3-2)
√3(√3x+√3-x-1)=√3(2)
√3x+√3-x-1=2
√3(x+1)-(x+1)=2
(√3-1)(x+1)=2
x+1=2/√3-1....rationalizee
x+1= 2(√3+1)/2
x=√3
x=1.732==== 1.732 ans
Similar questions