Math, asked by shaswatisahoo745, 1 month ago

(e^(x)+e^(-x))/(x^(2)+1)` differentiate​

Answers

Answered by Anonymous
8

Step-by-step explanation:

As per the information provided in the question, We have :

  • y = (e^(x)+e^(-x))/(x^(2)+1)

In order to find the derivative of (e^(x)+e^(-x))/(x^(2)+1). We will use quotient rule.

It is given by –

\longmapsto \rm  \dfrac{d}{dx} y =  \dfrac{d}{dx} \bigg ( \dfrac{u}{v} \bigg )  =  \dfrac{v \dfrac{d}{dx} u - u \dfrac{d}{dx} v}{ {v}^{2} }

By applying this We get,

{\longmapsto \rm  \dfrac{ ({x}^{2}  + 1) \dfrac{d}{dx} ( {e}^{x}  +  {e}^{ - x} ) - ( {e}^{x}  +  {e}^{ - x} )\dfrac{d}{dx} ( {x}^{2}  + 1)}{ {({x}^{2}  + 1)}^{2} } }

{\longmapsto \rm  { \dfrac{({x}^{2}  + 1) ( {e}^{x}   -   {e}^{ - x} ) - ( {e}^{x}  +  {e}^{ - x} )\dfrac{d}{dx} ( {x}^{2}  + 1)}{{({x}^{2}  + 1)} ^{2} }} }

{\longmapsto \rm   \dfrac{({x}^{2}  + 1) ( {e}^{x}   -   {e}^{ - x} ) - ( {e}^{x}  +  {e}^{ - x} )(2 \times  {x}^{2 - 1}  + 1)}{  {({x}^{2}  + 1)}^{2} } }

{\longmapsto \rm   \dfrac{({x}^{2}  + 1) ( {e}^{x}   -   {e}^{ - x} ) - ( {e}^{x}  +  {e}^{ - x} )(2  {x})}{  {({x}^{2}  + 1)}^{2} } }

{\longmapsto \rm   \dfrac{({x}^{2}  + 1) ( {e}^{x}   -   {e}^{ - x} ) - 2x( {e}^{x}  +  {e}^{ - x} )}{  {({x}^{2}  + 1)}^{2} } }

\therefore \sf{ { Hence,   \dfrac{({x}^{2}  + 1) ( {e}^{x}   -   {e}^{ - x} ) - 2x( {e}^{x}  +  {e}^{ - x} )}{  {({x}^{2}  + 1)}^{2} }  \:  is \:  the \:  derivative.}}

Learn more!

\begin{gathered}\boxed{\begin{array}{cc}\bf{\dag}\:\:\underline{\text{Differentiation  \:formulae:}}\\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {log(x)}) =\dfrac{1}{x} \\\\\bigstar\:\:\sf\dfrac{d}{dx} ( {\sqrt{x}} )=\dfrac{1}{2 \sqrt{x}}\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\sin(x)})=\cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\cos(x)})=-\sin(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\sin(x)})=\cos(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\tan(x)})={\sec}^{2}(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\cot(x)})=-{ \cosec}^{2}(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\sec(x)})=\sec(x)\times  \tan(x)\\\\\bigstar\:\:\sf\dfrac{d}{dx}({\cosec(x)})= - \cosec(x)\times\cot(x)\end{array}}\end{gathered}

Similar questions