Math, asked by rajeshwarikoli1056, 2 days ago

e^x-y=x/y find dy/dx​

Answers

Answered by mathdude500
2

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\: {e}^{x - y} = \dfrac{x}{y}

On taking log on both sides, we get

\rm :\longmapsto\: log{e}^{x - y} =log \dfrac{x}{y}

\boxed{\tt{  {log \: x}^{y} = y \: logx \: }} \:  \: and \:  \: \boxed{\tt{ log \frac{x}{y} = logx - logy \: }}

So, using this, we get

\rm :\longmapsto\:(x - y)loge = logx \:  -  \: logy

\rm :\longmapsto\:(x - y) \times 1 = logx \:  -  \: logy

\rm :\longmapsto\:x - y= logx \:  -  \: logy

\rm :\longmapsto\:logy- y= logx \:  -  \: x

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\bigg[logy- y\bigg]= \dfrac{d}{dx}\bigg[logx \:  -  \: x\bigg]

We know,

\boxed{\tt{ \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x} \:  \: }}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx}  - \dfrac{dy}{dx} = \dfrac{1}{x} - 1

\rm :\longmapsto\:\dfrac{dy}{dx}\bigg[\dfrac{1}{y}  - 1\bigg] = \dfrac{1}{x} - 1

\rm :\longmapsto\:\dfrac{dy}{dx}\bigg[\dfrac{1 - y}{y}\bigg] = \dfrac{1 - x}{x}

\rm \implies\:\boxed{\tt{  \:  \: \dfrac{dy}{dx} \:  =  \:  \frac{y(1 - x)}{x(1 - y)} \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions