Math, asked by bhosaleatharva430, 19 days ago

e^xtanydx+(1-e^x)sec²ydy=0, solve the following differential equation

Answers

Answered by mathdude500
1

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm \: {e}^{x} \: tany \: dx + (1 - {e}^{x}) \:  {sec}^{2}y \: dy \:  =  \: 0 \\

can be rewritten as

\rm \: {e}^{x} \: tany \: dx  =  ({e}^{x} - 1) \:  {sec}^{2}y \: dy \: \\

can be further rewritten as

\rm \: \dfrac{{e}^{x}}{{e}^{x} - 1} dx \:  =  \: \dfrac{ {sec}^{2}y}{tany} dy \\

On integrating both sides, we get

\rm \: \displaystyle\int\rm \dfrac{{e}^{x}}{{e}^{x} - 1} dx \:  =  \:\displaystyle\int\rm  \dfrac{ {sec}^{2}y}{tany} dy \\

Now,

\rm \: \dfrac{d}{dx}({e}^{x} - 1) = {e}^{x} \\

and

\rm \: \dfrac{d}{dy}tany =  {sec}^{2}y \\

Also, we know that,

\boxed{ \rm{ \:\displaystyle\int\rm  \frac{f'(x)}{f(x)} \: dx \:  =  \: log |f(x)|  + c \:  \: }} \\

So, above expression can be rewritten as

\rm \: log |{e}^{x} - 1|  = log |tany|  + logc \\

\rm \: log |{e}^{x} - 1|  = log |c(tany)|   \\

\rm \: {e}^{x} - 1 = c \: tany \\

Hence, Solution of differential equation is

\rm\implies \:\rm \:\boxed{ \rm{ \: {e}^{x} - 1 = c \: tany \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions