Math, asked by tanusinghrathor, 1 month ago

∫e²log cot x dx =

1) cot x-x+c 2) cot x+x+c 3) tan x-x+c 4)-cot x-x+c​

Answers

Answered by Anonymous
15

Given,

\displaystyle\longrightarrow I=\int e^{2\log\cot x}\ dx

Since e^{b\log a}=a^b,

\displaystyle\longrightarrow I=\int \cot^2x\ dx

Since \csc^2x-\cot^2x=1,

\displaystyle\longrightarrow I=\int(\csc^2x-1)\ dx

\displaystyle\longrightarrow I=\int\csc^2x\ dx-\int dx

\displaystyle\longrightarrow\underline{\underline{I=-\cot x-x+c}}

Hence (4) is the answer.

Some Integral Results:-

\displaystyle\int\cos x\ dx=\sin x+c

\displaystyle\int\sin x\ dx=-\cos x+c

\displaystyle\int\sec^2x\ dx=\tan x+c

\displaystyle\int\csc^2x\ dx=-\cot x+c

\displaystyle\int\sec x\tan x\ dx=\sec x+c

\displaystyle\int\csc x\cot x\ dx=-\csc x+c

\displaystyle\int\tan x\ dx=\log|\sec x|+c

\displaystyle\int\cot x\ dx=-\log|\csc x|+c

\displaystyle\int\sec x\ dx=\log|\sec x+\tan x|+c

\displaystyle\int\csc x\ dx=-\log|\csc x+\cot x|+c

Similar questions