Math, asked by henry4423, 1 year ago

Each coefficient in the equation ax2 + bx + c = 0 is determined by throwing an ordinary die. Find the probability that equation will have real roots.

Answers

Answered by akashkumar701
34
required probability
P = 119/(36^3)(27)
Attachments:
Answered by amitnrw
78

Answer:

43/216

Step-by-step explanation:

Throwing an die

6 * 6 * 6 = 216

b² - 4ac ≥ 0 for real roots

if b = 6

=> 36 - 4ac ≥ 0

=> ac ≤ 9

( a = 1 , c = 1 , 2 , 3 , 4 , 5 , 6)

 a = 2  , c= 1 , 2 , 3 , 4

 a= 3  , c = 1  , 2 , 3

 a = 4  , c = 1,  2

 a = 5  ,  c = 1

a = 6 , c = 1)

17 cases

if b = 5

=> 25 - 4ac ≥ 0

=> ac ≤ 6

a = 1  , c = 1 , 2 , 3 , 4 , 5 , 6

a = 2  , c= 1 , 2 , 3

 a= 3  , c = 1  , 2

 a = 4  , c = 1

 a = 5  ,  c = 1

a = 6 , c = 1

14 cases

if b = 4

=>16 - 4ac ≥ 0

=> ac ≤ 4

a = 1  , c = 1 , 2 , 3 , 4

a = 2  , c= 1 , 2

 a= 3  , c = 1

 a = 4  , c = 1

8 cases

if b = 3

=>9 - 4ac ≥ 0

=> ac ≤ 2

a = 1  , c = 1 , 2

a = 2  , c= 1

3 cases

if b = 2

=>4 - 4ac ≥ 0

=> ac ≤ 1

a = 1  , c = 1

1 case

no case for b = 1

17 + 14 + 8 + 3 + 1 + 0 = 43 cases

probability that equation will have real roots = 43/216

Similar questions