Each equal side of an equilateral triangle is 13 cm each find it's area and its altitude
Answers
Answer:
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Each equal side of an equilateral triangle is 13cm. Find its area and altitude.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Given:-
- each side of an equilateral triangle is 13cm
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
To find:-
- area and altitude of the triangle
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Formula for finding area of triangle:-
❶1/2×base×altitude
❷√s(s-a)(s-b)(s-c) where s is semi perimeter
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
°•°sides are given,we will use the second formula.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Now,let sides are a,b and c respectively
•°•a=b=c=13cm
S=a+b+c/2
=13+13+13/2
=39/2
=19.5cm
now ,area of the triangle=√s(s-a)(s-b)(s-c) =√19.5(19.5-13)(19.5-13)(19.5-13)
=√19.5×6.5×6.5×6.5
=6.5√176.75cm^2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
hence the area of the triangle is 6.5√176.75cm^2
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Formula for finding area of triangle:-
❶1/2×base×altitude
❷√s(s-a)(s-b)(s-c) where s is semi perimeter
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
°•°sides are given,we will use the second formula.
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Now,let sides are a,b and c respectively
•°•a=b=c=13cm
S=a+b+c/2
=13+13+13/2
=39/2
=19.5cm
now ,area of the triangle=√s(s-a)(s-b)(s-c) =√19.5(19.5-13)(19.5-13)(19.5-13)
=√19.5×6.5×6.5×6.5
=6.5√176.75cm^2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
hence the area of the triangle is 6.5√176.75cm^2