Math, asked by memoonasad2006, 11 months ago

Each of the cuboids with the 0.8metre by 0.25metre by 0.35metre dimensions is cut to form smaller cubes of length 4cm. What is the maximum number of cubes that can be obtained

Answers

Answered by Brâiñlynêha
60

\huge\mathbb{SOLUTION:-}

\sf\underline{\underline{\purple{Given:-}}}

\sf\:\:\bullet Dimensions\:of\: cuboid\\ \\ \sf\:\implies 0.8m \:,0.25m\:,0</p><p>35m\\ \\ \sf\:\:\:\bullet Dimensions : of\:cube\\ \\ \sf\:\::\implies 4cm \:\:or\:0.04m

\sf\underline{\red{A.T.Q:-}}

\boxed{\sf{Volume\:of\:cuboid=l\times b\times h}}

\boxed{\sf{Volume\:of\:cube=side{}^{3}}}

  • First find the volume of cuboid

\sf:\implies Volume\:of\: Cuboid=0.8\times 0.25\times 0.35\\ \\ \sf:\implies Volume=0.07m{}^{3}

\sf\underline{Volume\:of\:cuboid=0.07m{}^{3}}

  • Now the Volume of cube

\sf:\implies Volume\:of\: Cube=0.04\times 0.04\times 0.04\\ \\ \sf:\implies Volume=0.000064m{}^{3}

\sf\underline{Volume\:of\:cube=0.000064m{}^{3}}

  • Now the Number of cubes that can be cut from cuboid

\sf\boxed{\sf{No.\:\:of\:Cubes=\dfrac{Volume\:of\: cuboid}{Volume\:of\:cube}}}

\sf:\implies No.\:of \:Cubes=\cancel{\dfrac{0.07}{0.000064}}\\ \\ \sf\implies No.\:of\:cubes=1093.75

\sf\underline{\blue{Number\:of\:cubes=1093.75}}

Answered by shahid2389
61

Step-by-step explanation:

note: volume of cuboid = lbh

and volume of cube = side³ or length ³

Attachments:
Similar questions