Math, asked by rs84thakur, 1 month ago

each of the equal sides of an isosceles triangle is 2 cm more than its height and the base of the triangle is 12 cm find the area of the triangle​

Answers

Answered by Divas07
0

Answer:

Base- 12cm

Sides-2 more

Answer- Don't know...

Answered by KnightLyfe
15

In this question it's given that,

  • Each equal sides of isosceles triangle is 2 cm more than the height.
  • Base of the isosceles triangle is 12 cm.

We need to calculate the area of triangle from given values.

Let us assume the height of triangle as h cm.

Now, according to the question, each equal sides of the isosceles triangle is 2 cm more than it's height. So,

\longrightarrow\sf{Equal\: sides=(h+2)cm}

We know, that Area of an isoceles triangle is,

\twoheadrightarrow\sf{{Area}_{(Isoceles\: triangle)}=\dfrac{1}{4}b\sqrt{4{a}^{2}-{b}^{2}}}

Also, Area of triangle is half of the base times height. That is,

\twoheadrightarrow\sf{{Area}_{(Triangle)}=\dfrac{1}{2}(b\times h)}

Now,

\longrightarrow\sf{{Area}_{(Triangle)}={Area}_{(Isosceles\: triangle)}}

Using Formula,

\longrightarrow\sf{\dfrac{1}{2}(b\times h)=\dfrac{1}{4}b\sqrt{4{a}^{2}-{b}^{2}}}

Substituting all the values, we get:

\longrightarrow\sf{\dfrac{1}{2}(12\times h)=\dfrac{1}{4}12\sqrt{4{(h+2)}^{2}-{12}^{2}}}

Simplifying, we get:

\longrightarrow\sf{6h=3\sqrt{4{(h+2)}^{2}-{12}^{2}}}

Using Identity:

ㅤㅤㅤㅤㅤㅤ★ (a+b)² = a² + b² + 2ab

\longrightarrow\sf{6h=3\sqrt{4({h}^{2}+{2}^{2}+4h)-144}}

Transposing 3 from RHS to LHS,

\longrightarrow\sf{\dfrac{6h}{3}=\sqrt{{4h}^{2}+16+16h-144}}

Performing division on LHS side.

\longrightarrow\sf{2h=\sqrt{{4h}^{2}+16+16h-144}}

Subtracting, 144 by 16, we get:

\longrightarrow\sf{2h=\sqrt{4h}^{2}+16h-128}

Taking square on both the sides.

\longrightarrow\sf{{(2h)}^{2}={\left(\sqrt{{4h}^{2}+16h-128}\right)}^{2}}

Simplifying,

\longrightarrow\sf{{4h}^{2}={4h}^{2}+16h-128}

Transposing 4h² and 16h from RHS to LHS,

\longrightarrow\sf{{4h}^{2}-{4h}^{2}-16h=-128}

Cancelling +4h² and -4h² on LHS,

\longrightarrow\sf{-16h=-128}

Transposing, -16 from LHS to RHS and performing division.

\longrightarrow\sf{h=\dfrac{-16}{-128}}

\longrightarrow\bold{h=8}

We've calculated the height of the triangle that is 8 cm. Now, we are given that base of the triangle is 12 cm. Substituting this values in Area of triangle Formula.

\longrightarrow\sf{{Area}_{(Triangle)}=\dfrac{1}{2}(b\times h)}

\longrightarrow\sf{{Area}_{(Triangle)}= \dfrac{1}{2}(12\times 8)}

Multiplying, 12 and 8.

\longrightarrow\sf{{Area}_{(Triangle)}=\dfrac{1}{2}(96)}

Dividing, 96 by 2.

\longrightarrow\bold{{Area}_ {(Triangle)}=48\: {cm}^{2}}

❝ Therefore, Area of the triangle is 48 cm². ❞

Similar questions