Math, asked by helekarradhika69, 11 months ago

Each of the four angles of rectangle is a right angle prove

Answers

Answered by hegdelochana
1

Answer:

Step-LET ABC BE A RECTANGLE IN WHICH ANGLE A =90 DEGREE WE HAVE TO SHOW THAT ANGLE B= ANGLE C= ANGLE D=90 DEGREE WE HAVE AD // BC AND AB IS A TRANSVERSAL SO, ANGLE A + ANGLE B = 180 DEGREE(INTERIOR ANGLES ON THE SAME SIDE OF THE TRANSVERSAL0 BUT, ANGLE A =90 DEGREE SO, ANGLE B = 180 - ANGLE A = 180 - 90 = 90 DEGREE ANGLE C= ANGLE A AND ANGLE D= ANGLE B (OPPOSITE ANGLES OF THE //GM) SO, ANGLE C=90 AND ANGLE D=90 THEREFORE, EACH OF THE ANGLES OF A RECTANGLE IS 90 DEGREE. HENCE,PROVED

Answered by MissGlamorouss
53

{\huge{\underline{\underline{\sf{\pink{Solutions:-}}}}}}

═══════════════════════════════

{\large{\underline{\underline{\sf{\red{Given:-}}}}}} A rectangle ABCD such that ∠A =90°

{\large{\underline{\underline{\sf{\green{To\:Prove:-}}}}}} A =∠B=∠C=∠D= 90°

{\large{\underline{\underline{\sf{\blue{Answer:-}}}}}} ABCD is a rectangle

ABCD is a parallelogram

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀AB || BC

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀AD || BC and line AB intersects them at Aand B.

⠀⠀⠀⠀⠀⠀⠀⠀⠀ ∠A + ∠B = 180°

⠀⠀⠀[ Sum of the interior angles on the same side of a tranversal is 180°]

90° + ∠B = 180° ⠀⠀⠀⠀⠀⠀⠀[A = 90°(Given)]

∠B = 90°

Similarly, we can show that∠C = 90°and∠D =90°

{\</strong><strong>l</strong><strong>a</strong><strong>r</strong><strong>g</strong><strong>e</strong><strong>{\underline{\underline{\sf{\</strong><strong>p</strong><strong>i</strong><strong>n</strong><strong>k</strong><strong>{</strong><strong>H</strong><strong>e</strong><strong>n</strong><strong>c</strong><strong>e</strong><strong>,</strong><strong>:-}}}}}} A =∠B=∠C=∠D= 90°

════════════════════════════════

Attachments:
Similar questions