Math, asked by pradipdwivedy4097, 10 months ago

Each side of an equilateral triangle is 10 cm. Find (i) the area of the triangle and (ii) the height of the triangle.​

Answers

Answered by Adityaraj80511
0

Answer:

i)Area of traingle =1/2*10*10=50

Step-by-step explanation:

2)

Answered by Anonymous
4

Given ,

  • The side of equilateral triangle is 10 cm

We know that , the area of equilateral triangle is given by

  \large{ {\boxed{ \sf{Area =  \frac{ \sqrt{3} }{4} \times  {(side)}^{2}  }}}}

Thus ,

 \sf \mapsto Area =  \frac{ \sqrt{3} }{4}  \times  {(10)}^{2}  \\  \\\sf \mapsto Area =  \frac{ \sqrt{3} }{2}   \times 50 \\  \\\sf \mapsto Area = 25 \sqrt{3}  {cm}^{2}

 \sf \therefore \underline{The  \: area  \: of  \: equilateral \:  triangle  \: is  \: 25 \sqrt{3}  \:  {cm}^{2}}

Now ,

 \boxed{ \sf{Area =  \frac{1}{2}  \times base  \times height}}

Thus ,

 \sf \mapsto 25 \sqrt{3}  =  \frac{1}{2}  \times 10 \times height  \\   \\ \sf \mapsto 25 \sqrt{ 3}   = 5 \times height \\ \\ \sf \mapsto height = 5 \sqrt{3}  \:  \: cm

 \sf \therefore{ \underline{The \:  height  \: of  \: equilateral \:  triangle \:  is \: 5\sqrt{3} \: cm }}

Similar questions