Math, asked by abnandini013, 4 days ago

Each side of an equilateral triangle is 8cm, its area is _____ .
(a)16 \sqrt{3 {cm}^{2} }
(b)8 \sqrt{3}  {cm}^{2}

Answers

Answered by amansharma264
13

EXPLANATION.

Each side of an equilateral triangle = 8 cm.

As we know that,

Formula of :

Area of an equilateral triangle = (√3)/(4) x (a²).

Using this formula in the equation, we get.

Side = a = 8 cm.

Area of an equilateral triangle = (√3)/(4) x (8)².

Area of an equilateral triangle = (√3)/(4) x 64.

Area of an equilateral triangle = (√3) x 16.

Area of an equilateral triangle = 16√3 cm².

Option [A] is correct answer.

Answered by Anonymous
26

 \rm \bigstar \: Given :

 \rm \: Each  \: side  \: of  \: an \:   \: equilateral \:  triangle \:  is \:  8cm

\rm \bigstar \: To \:  Find :

 \rm \: Area  \: of  \: that  \: equilateral  \: triangle

\rm \bigstar \: Solution :

 \rm \: The  \: formula \:  to \:  calculate  \: the \:  area  \: of  \: an

  \rm \: equilateral  \: triangle  \: is \:   \: given \:  as \: , Area  \: of  \: an

 \rm \: equilateral  \: triangle.

\rm \implies  \:A =  \dfrac{ \sqrt{3} }{4}  \:  {a}^{2}  \:  square  \: units.

 \rm \: Where

 \rm \: A \implies \: 	Area \:  of \:  Equilateral  \: triangle

 \rm \: a	 \implies \: Side  \: length

 \rm \: By \:  using  \: this \:  formula

 \rm \implies \:  \dfrac{ \sqrt{3} }{4}  \times  {8}^{2}

\rm \implies \:  \dfrac{ \sqrt{3} }{4} \times 64

\rm \implies \:  \dfrac{ \sqrt{3} }{ \cancel{4}}\times  \: \cancel{  {64}}^{ \: 16}

 \rm \implies \:  16 \:  \sqrt{3}  \:  {cm}^{2}

 \rm \: Therefore

\rm \implies \:(a) \:  \:   16 \:  \sqrt{3}  \:  {cm}^{2}  \: is \: correct \: option

Attachments:
Similar questions