Math, asked by siddharthrajput19697, 4 months ago

Each side of rhombus is 20 cm. Is long, and the length of its 1 diagonal is 24 cm. Find the area of rhombus.​

Answers

Answered by Anonymous
7

AnswEr-:

\underline {\boxed { \mathrm { \red{ Area_{( Rhombus)} = 384cm^{2} }}}}

Explanation-:

\mathrm { Given-:}

  • Each side of rhombus is 20 cm .
  • Length of its Diagonal¹ is 24 cm

\mathrm { To\:Find-:}

  • The Area of Rhombus.

\dag{\mathrm { Solution \:of\:Question-:}}

\mathrm { Refer\:the\:Attachment-:}

  • In the Rhombus ABCD .
  • AB = 20 cm
  • and , AC = 24 cm .

\mathrm { From\:the\:Attachment-:}

  • AO + CO = 24cm
  • Then ,
  • AO = 12 cm [ AO = CO ] _________[1]

Now ,

  • In \triangle AOB

  • AB = 20 cm [ Side of Rhombus]
  • AO = 12 cm ________[ From 1 ]

\mathrm { By\:Applying \:Pythagoras\:Theorem-:}

  • \star{\mathrm {Hypotenuse^{2} = Base ^{2} + Perpendicular ^{2} }}

Here,

  • AB = 20 cm [ Hypotenuse]
  • AO = 12 cm [ Perpendicular]
  • BO = ?? [ Base ]

Then ,

  • \longrightarrow{\mathrm {AB^{2} = BO ^{2} + AO ^{2} }}

Now , By Putting known Values-:

  • \longrightarrow{\mathrm {20^{2} = BO ^{2} + 12^{2} }}

  • \longrightarrow{\mathrm {BO^{2} = 20 ^{2} + 12^{2} }}

  • \longrightarrow{\mathrm {BO^{2} = 400 + 144 }}

  • \longrightarrow{\mathrm {BO = \sqrt{400-144} }}

  • \longrightarrow{\mathrm {BO = \sqrt {256}}}

  • \longrightarrow{\mathrm {BO = 16cm  }}

Therefore,

  • BO = 16 cm

As , We know that ,

  • BO = DO = 16 cm

Then ,

  • BD = BO + DO
  • BD = 2BO ___[ BO = DO ]
  • BD = 16 × 2 [ BO = 16 cm]
  • BD = 32 cm

Therefore,

  • BD = 16 cm

As ,We , Know that ,

  • BD = Diagonal 2 of Rhombus = 32 cm _______[2]

____________________________________________________

As , We know that ,

  • \underline {\boxed { \mathrm { \red{ Area_{( Rhombus)} = \dfrac{1}{2} \times Diagonal 1 \times Diagonal 2 }}}}

  • Here ,
  • Diagonal 1 = 24 cm ______[ Given that ]
  • Diagonal 2 = 32 cm _______[ From 2]

Now , Putting known Values-:

  • \longrightarrow {\mathrm { \dfrac{1}{2} \times 24 \times  32 }}

  • \longrightarrow {\mathrm { \dfrac{1}{\cancel{2}} \times \cancel {24} \times  32 }}

  • \longrightarrow {\mathrm {  12 \times  32 }}

  • \longrightarrow {\mathrm { Area \:= 384cm^{2} }}

Hence ,

  • \underline {\boxed { \mathrm { \red{ Area_{( Rhombus)} = 384cm^{2} }}}}

________________________________________________________

Attachments:
Similar questions