each students in a class of 35 plays atleast one game among chess,carrom and table tennis.22 play chess,21 play carrom,15 play table tennis , 10 play chess and table tennis,8 play carrom and table tennis and 6 play all the three games.find the number of students who play a)chess and carrom but not table tennis;b)only chess ;c)only carrom.
Answers
Answered by
14
Answer:
n(Chess)=22=C
n (Carrom)=21=CA
n (Table Tennis)= 15=T
n (C ∩ T )=10
n ( C A ∩ T)= 8
n ( C ∩ C A ∩ T )=6
⇒n (C ∪ CA ∪ T)=n(C) +n (C A) +n (T)-n (C ∩ CA) -n(CA ∩ T)-n(T ∩ C)+n ( C ∩ C A ∩ T )
⇒35=22+21+15-n (C ∩ CA)-8-10+6
⇒35 = 58-12-n (C ∩ CA)
⇒n (C ∩ CA)=46-35
⇒n (C ∩ CA)=11
Number of students who play chess and Carrom but not table tennis
= n (C ∩ CA)- n ( C ∩ C A ∩ T )
=11 -6
=5
Number of students who play chess only
= n (C) -n(C∩T)-n(C∩CA)+n ( C ∩ C A ∩ T )
= 22 - 10 - 11 + 6
=28 -21
=7
Number of students who play Carrom only
= n (CA) -n(CA∩T)-n(C∩CA)+n ( C ∩ C A ∩ T )
= 21 - 8 -11+ 6
=27 -19
=8
Similar questions
Math,
7 months ago
Science,
7 months ago
Computer Science,
1 year ago
Math,
1 year ago
Computer Science,
1 year ago