Earlier this week, a math puzzle that had stumped mathematicians for decades was finally solved. It’s called a Diophantine Equation, and it’s sometimes known as the “summing of three cubes”: Find x, y, and z such that x³+y³+z³=k, for each k from 1 to 100.
On the surface, it seems easy. Can you think of the integers for x, y, and z so that x³+y³+z³=8? Sure. One answer is x = 1, y = -1, and z = 2. But what about the integers for x, y, and z so that x³+y³+z³=42?
Answers
Answered by
0
Answer:
1 cube plus 1 cube plus 2 cube is equal to 8
Step-by-step explanation:
t2 cube plus 2 cube plus 3 Cube is equal to 42
Similar questions