Math, asked by syladaannapurna, 10 months ago

* Earth dug out on making a circular tank of radius 7 m is spread all round the tank uniformly to a wide
of 1 m to form an embankment of height 3.5 m. Then the depth of the tank is

Answers

Answered by Anonymous
22

et h1h1 be the height of circular tank Then

Volume of circular tank= Volume of embankment=πr2h1πr2h1.....(1)

Height of embankment, h2h2=3.5 m

Inner radius of embankment, r1r1=7m

Outer radius of embankment, r2r2=8m

∴∴ Volume of embankment=πr21h2−πr22h2πr12h2−πr22h2

=π(82×3.5−72×3.5)π(82×3.5−72×3.5)

=π(224−49×3.5)=52.5ππ(224−49×3.5)=52.5π

Substituting in (1) we get

π×72×h1=52.5ππ×72×h1=52.5π

or h1=52.549=7.57×22=1514mh1=52.549=7.57×22=15/14m

Answered by Anonymous
64

GIVEN:-

  • \rm{inner\:Radius\:of\:tank(R)=7cm}

  • \rm{Height\:of\:embankment(h)=3.5m}

  • \rm{Outer\:Radius\:of\:embankment(r)=8m}

TO FIND:-

  • Height of the tank(H)

FORMULAE USED:-

  • {\boxed{\rm{Volume\:of\:object=\pi r^2h}}}

Where,

R= Radius

H = Height.

Now,

Volume of tank = Volume of embankment

So,

Volume of embankment= πr²h.......1

Now,

\implies\rm{Volume\:of\:embankment=\pi R^{2}h-\pi r^2h}

\implies\rm{Volume\:of\: embankment= \pi ( 8^2\times{3.5}-7^2\times{3.5})}

\implies\rm{\pi(224-49\times{3.5})}

\implies\rm{(52.5\pi)}

Substituting (1) in we get.

\implies\rm{\pi r^2h=\dfrac{22}{7}\times{7^2}\times{h}}

\implies\rm{52.5\pi=\dfrac{22}{7}\times{49}\times{h}}

\implies\rm{52.5\pi=\dfrac{22}{\cancel{7}}\times{\cancel{49}}\times{h}}

\implies\rm{52.5\pi=22\times{7}\times{h}}

\implies\rm{52.5\times{\dfrac{22}{7}=154h}}

\implies\rm{1155=1078h}

\implies\rm{h=\dfrac{\cancel{1155}}{\cancel{1078}}}

\implies\rm{h=\dfrac{15}{14}}

Hence, The height of tank is 15\14m


amitkumar44481: Perfect :-)
Anonymous: Osm :)
Similar questions