Math, asked by Anonymous, 7 hours ago

Easy Question :)

Derive Laplace Equation from Cauchy Riemann Equations for a complex analytical function given by ;

f ( z ) = u + iv

where , u ( x , y ) and v ( x , y )

Laplace Equation you had to derive is :-

 {\quad \leadsto \quad \bf  \dfrac{\partial² u}{\partial x²} + \dfrac{\partial² u}{\partial y²} = 0 }

Answers

Answered by anushkakashyap2169
1

Step-by-step explanation:

Hope helpful for you Mark me as brainlist please

Attachments:
Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given complex analytic function is

 \purple{\rm :\longmapsto\:f ( z ) = u + iv \:  \: where , \: u ( x , y ) \: and \: v ( x , y )}

We have to prove that,

 \purple{\rm :\longmapsto\:\boxed{\tt{  \frac{ {\partial }^{2} u}{ {\partial x}^{2} } + \frac{ {\partial }^{2} u}{ {\partial y}^{2} } = 0}}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{  \frac{ {\partial }^{2} v}{ {\partial x}^{2} } + \frac{ {\partial }^{2} v}{ {\partial y}^{2} } = 0}}}

Now, From Cauchy Reimann Equations, we have

\rm :\longmapsto\: \: \dfrac{\partial u}{\partial x} \:   = \dfrac{\partial v}{\partial y}

and

\rm :\longmapsto\: \: \dfrac{\partial u}{\partial y} \:   = -  \:  \dfrac{\partial v}{\partial x}

Now, From first equation of Cauchy Reimann, we have

\rm :\longmapsto\: \: \dfrac{\partial u}{\partial x} \:   = \dfrac{\partial v}{\partial y}

Differentiate partially w. r. t. x, we get

\rm :\longmapsto\: \: \dfrac{\partial ^{2} u}{\partial  {x}^{2} } \:   = \dfrac{\partial^{2}  v}{\partial x\partial y}  -  -  -  - (1)

Also, from 2nd equation of Cauchy Reimann, we have

\rm :\longmapsto\: \: \dfrac{\partial u}{\partial y} \:   = -  \:  \dfrac{\partial v}{\partial x}

On differentiating partially w. r. t. y, we get

\rm :\longmapsto\: \: \dfrac{\partial ^{2} u}{\partial  {y}^{2} } \:   = -  \:  \dfrac{\partial^{2}  v}{\partial y\partial x}

can be rewritten as

\rm :\longmapsto\: \: \dfrac{\partial ^{2} u}{\partial  {y}^{2} } \:   = \:  -  \:  \dfrac{\partial^{2}  v}{\partial x\partial y}  -  -  -  - (2)

So, on equating equation (1) and (2), we get

\rm :\longmapsto\: \: \dfrac{\partial ^{2} u}{\partial  {x}^{2} } \:   = \:  -  \:  \dfrac{\partial^{2} u}{\partial \:  {y}^{2} }

\rm :\longmapsto\: \boxed{\tt{ \: \dfrac{\partial ^{2} u}{\partial  {x}^{2} } \:  +   \:  \dfrac{\partial^{2} u}{\partial \:  {y}^{2} }  = 0}}

Also, Again From first equation of Cauchy Reimann, we have

\rm :\longmapsto\: \: \dfrac{\partial u}{\partial x} \:   = \dfrac{\partial v}{\partial y}

On differentiating partially w. r. t. y, we get

\rm :\longmapsto\: \: \dfrac{\partial ^{2} v}{\partial  {y}^{2} } \:   = \dfrac{\partial^{2}  u}{\partial x\partial y}  -  -  -  - (3)

From Second equation of Cauchy Reimann, we have

\rm :\longmapsto\: \: \dfrac{\partial u}{\partial y} \:   = -  \:  \dfrac{\partial v}{\partial x}

On differentiating partially both sides w. r. t. x, we get

\rm :\longmapsto\: \: -  \:  \dfrac{\partial ^{2}v}{\partial  {x}^{2} } \:   = \dfrac{\partial^{2}  u}{\partial x\partial y}  -  -  -  - (4)

On equating equation (3) and (4), we get

\rm :\longmapsto\: \:  -  \: \dfrac{\partial ^{2} v}{\partial  {x}^{2} } \:   =   \:  \dfrac{\partial^{2} v}{\partial \:  {y}^{2} }

\rm :\longmapsto\: \: \boxed{\tt{ \dfrac{\partial ^{2} v}{\partial  {x}^{2} } \: + \:  \dfrac{\partial^{2} v}{\partial \:  {y}^{2} }   = 0}}

Hence, Proved

Similar questions