Math, asked by Anonymous, 6 hours ago

Easy Question This time :)

Find the Derivative of Cos x from ab-initio method ! ​

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = cosx

So,

\rm :\longmapsto\:f(x + h) = cos(x + h)

By definition of First Principal, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{f(x + h) - f(x)}{h}

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\rm  \frac{cos(x + h) - cosx}{h}

We know,

\boxed{\tt{ cosx - cosy =  - 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]}}

So, using this identity, we get

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{ - 2sin\bigg[\dfrac{x + h + x}{2} \bigg]sin\bigg[\dfrac{x + h - x}{2} \bigg]}{h}

\rm \:  =  \: \displaystyle\lim_{h \to 0}\rm  \frac{ - 2sin\bigg[\dfrac{2x + h}{2} \bigg]sin\bigg[\dfrac{h}{2} \bigg]}{h}

\rm \:  =  \:  - 2\displaystyle\lim_{h \to 0}\rm sin\bigg[\dfrac{2x + h}{2} \bigg] \times \displaystyle\lim_{h \to 0}\rm  \frac{sin \dfrac{h}{2} }{h}

\rm \:  =  \:  -2sinx \times \displaystyle\lim_{h \to 0}\rm  \frac{sin \dfrac{h}{2} }{ \dfrac{h}{2}  \times 2}

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  \:  \: \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x}  \:  \:  =  \:  \: 1 \:  \: }}}

So, using this, we get

\rm \:  =  \:  - 2sinx \times \dfrac{1}{2}

\rm \:  =  \:  -  \: sinx

Hence,

 \\ \purple{\rm\implies \:\boxed{\tt{ \dfrac{d}{dx}cosx \:  =  \:  -  \: sinx \:  \: }}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by Itzintellectual
1

Step-by-step explanation:

Solution−

Given function is

\rm :\longmapsto\:f(x) = cosx:⟼f(x)=cosx

So,

\rm :\longmapsto\:f(x + h) = cos(x + h):⟼f(x+h)=cos(x+h)

By definition of First Principal, we have

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\rm \frac{f(x + h) - f(x)}{h}:⟼f

\rm :\longmapsto\:f'(x) = \displaystyle\lim_{h \to 0}\rm \frac{cos(x + h) - cosx}{h}:⟼

cos(x+h)−cos

Similar questions