Math, asked by Anonymous, 5 hours ago

Easy question this time!!

 \:  \:  \:  \:  \:  \:
Find value of x :
 \sf {6}^{3x}  + 4 - 216 = 35 \times  {6}^{3x}  + 2

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\:{6}^{3x} + 4 - 216 = 35 \times {6}^{3x} + 2

Let assume that

\rm :\longmapsto\:\boxed{\tt{  {6}^{3x} = y}}

So, above equation can be rewritten as

\rm :\longmapsto\:y - 216 + 4 = 35 \times y + 2

\rm :\longmapsto\:y - 212 = 35y + 2

\rm :\longmapsto\:y - 35y = 212 + 2

\rm :\longmapsto\: - 34y = 214

\sf\implies \: y \:  =  \:  -  \: \dfrac{214}{34}

\sf\implies \:  {6}^{3x}  \:  =  \:  -  \: \dfrac{214}{34}

We know,

\rm :\longmapsto\:\boxed{\tt{ \: {6}^{3x}  > 0 \: }}

\bf\implies \:There \: is \: no \: real \: value \: of \: x

Hence,

\boxed{\tt{ \:{6}^{3x} + 4 - 216 = 35 \times {6}^{3x} + 2 \: has \: no \: solution \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\green{a^m\div{a^n}\:=\:a^{m\: - \:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\red{\:x^{0}\: =  \: 1 \: }}}}} \\ \end{gathered}

Answered by Anonymous
0

There \: is \: no \: real \: value \: of \: x \\ </p><p></p><p>so \\ </p><p></p><p>\boxed{\tt{ \:{6}^{3x} + 4 - 216 = 35 \times {6}^{3x} + 2 \: has \: no \: solution \: }}</p><p></p><p>

Similar questions