Şec^-1(x^2+1/x^2-1)
-
Answers
Answered by
1
Answer:
We know that sec^(-1) A = π - sec^(-1) A
Cos 2A = (1-tan^2 A)/(1+tan^2 A) and also
sec^(-1) x = cos^(-1) (1/x)
So sec^(-1) {(x^2 + 1)/(x^2 - 1)}
= sec^(-1) {-(1+x^2)/(1-x^2)
= π - sec^(-1) {(1+x^2)/(1-x^2)}
= π - cos^(-1) {(1-x^2)/(1+x^2)
Let x = tanA => A = tan^(-1) x
The above becomes
π - cos^(-1) {(1-tan^2 A)/(1+tan^2 A)
= π - cos^(-1) cos 2A = π - 2A = π - 2 tan ^(-1) x
hope it helps u ..:)
Step-by-step explanation:
Similar questions